Author: Alain Haraux
Publisher: Springer
ISBN: 3540385347
Category : Mathematics
Languages : en
Pages : 324
Book Description
Nonlinear Evolution Equations - Global Behavior of Solutions
Author: Alain Haraux
Publisher: Springer
ISBN: 3540385347
Category : Mathematics
Languages : en
Pages : 324
Book Description
Publisher: Springer
ISBN: 3540385347
Category : Mathematics
Languages : en
Pages : 324
Book Description
Nonlinear Evolution Equations
Author: Songmu Zheng
Publisher: CRC Press
ISBN: 0203492226
Category : Mathematics
Languages : en
Pages : 303
Book Description
Nonlinear evolution equations arise in many fields of sciences including physics, mechanics, and material science. This book introduces some important methods for dealing with these equations and explains clearly and concisely a wide range of relevant theories and techniques. These include the semigroup method, the compactness and monotone operator
Publisher: CRC Press
ISBN: 0203492226
Category : Mathematics
Languages : en
Pages : 303
Book Description
Nonlinear evolution equations arise in many fields of sciences including physics, mechanics, and material science. This book introduces some important methods for dealing with these equations and explains clearly and concisely a wide range of relevant theories and techniques. These include the semigroup method, the compactness and monotone operator
Nonlinear Evolution Equations
Author: Michael G. Crandall
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 282
Book Description
This volume constitutes the proceedings of the Symposium on Nonlinear Evolution Equations held in Madison, October 17-19, 1977. The thirteen papers presented herein follow the order of the corresponding lectures. This symposium was sponsored by the Army Research Office, the National Science Foundation, and the Office of Naval Research.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 282
Book Description
This volume constitutes the proceedings of the Symposium on Nonlinear Evolution Equations held in Madison, October 17-19, 1977. The thirteen papers presented herein follow the order of the corresponding lectures. This symposium was sponsored by the Army Research Office, the National Science Foundation, and the Office of Naval Research.
An Introduction to Semilinear Evolution Equations
Author: Thierry Cazenave
Publisher: Oxford University Press
ISBN: 9780198502777
Category : Computers
Languages : en
Pages : 204
Book Description
This book presents in a self-contained form the typical basic properties of solutions to semilinear evolutionary partial differential equations, with special emphasis on global properties. It has a didactic ambition and will be useful for an applied readership as well as theoretical researchers.
Publisher: Oxford University Press
ISBN: 9780198502777
Category : Computers
Languages : en
Pages : 204
Book Description
This book presents in a self-contained form the typical basic properties of solutions to semilinear evolutionary partial differential equations, with special emphasis on global properties. It has a didactic ambition and will be useful for an applied readership as well as theoretical researchers.
Nonlinear Evolution Equations and Applications
Author: Gheorghe Morosanu
Publisher: Springer Science & Business Media
ISBN: 9789027724861
Category : Science
Languages : en
Pages : 362
Book Description
Publisher: Springer Science & Business Media
ISBN: 9789027724861
Category : Science
Languages : en
Pages : 362
Book Description
Lectures on Nonlinear Evolution Equations
Author: Reinhard Racke
Publisher: Birkhäuser
ISBN: 3319218735
Category : Mathematics
Languages : en
Pages : 315
Book Description
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behaviour of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial boundary value problems and for open questions are provided. In this second edition, initial-boundary value problems in waveguides are additionally considered.
Publisher: Birkhäuser
ISBN: 3319218735
Category : Mathematics
Languages : en
Pages : 315
Book Description
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behaviour of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial boundary value problems and for open questions are provided. In this second edition, initial-boundary value problems in waveguides are additionally considered.
Nonlinear Evolution Equations And Infinite Dimensional Dynamical Systems - Proceedings Of The Conference
Author: Tatsien Li
Publisher: World Scientific
ISBN: 9814546429
Category :
Languages : en
Pages : 286
Book Description
This volume contains 30 research papers presenting the recent development and trend on the following subjects: nonlinear hyperbolic equations (systems); nonlinear parabolic equations (systems); infinite-dimensional dynamical systems; applications (free boundary problems, phase transitions, etc.).
Publisher: World Scientific
ISBN: 9814546429
Category :
Languages : en
Pages : 286
Book Description
This volume contains 30 research papers presenting the recent development and trend on the following subjects: nonlinear hyperbolic equations (systems); nonlinear parabolic equations (systems); infinite-dimensional dynamical systems; applications (free boundary problems, phase transitions, etc.).
Proceedings of the International Congress of Mathematicians 2010 (icm 2010) (in 4 Volumes) - Vol. I: Plenary Lectures and Ceremonies, Vols. Ii-iv: Invited Lectures
Author:
Publisher: World Scientific
ISBN: 9814324353
Category :
Languages : en
Pages : 814
Book Description
Publisher: World Scientific
ISBN: 9814324353
Category :
Languages : en
Pages : 814
Book Description
Nonlinear Evolution Equations
Author: Songmu Zheng
Publisher: CRC Press
ISBN: 1135436479
Category : Mathematics
Languages : en
Pages : 302
Book Description
Nonlinear evolution equations arise in many fields of sciences including physics, mechanics, and material science. This book introduces some important methods for dealing with these equations and explains clearly and concisely a wide range of relevant theories and techniques. These include the semigroup method, the compactness and monotone operator methods, the monotone iterative method and invariant regions, the global existence and uniqueness theory for small initial data, and the asymptotic behavior of solutions and global attractors. Many of the results are published in book form for the first time. Bibliographic comments in each chapter provide the reader with references and further reading materials to enable further research and study.
Publisher: CRC Press
ISBN: 1135436479
Category : Mathematics
Languages : en
Pages : 302
Book Description
Nonlinear evolution equations arise in many fields of sciences including physics, mechanics, and material science. This book introduces some important methods for dealing with these equations and explains clearly and concisely a wide range of relevant theories and techniques. These include the semigroup method, the compactness and monotone operator methods, the monotone iterative method and invariant regions, the global existence and uniqueness theory for small initial data, and the asymptotic behavior of solutions and global attractors. Many of the results are published in book form for the first time. Bibliographic comments in each chapter provide the reader with references and further reading materials to enable further research and study.
Nonlinear Evolution Equations
Author: Nina B. Maslova
Publisher: World Scientific
ISBN: 9789810211622
Category : Mathematics
Languages : en
Pages : 210
Book Description
The book is devoted to the questions of the long-time behavior of solutions for evolution equations, connected with kinetic models in statistical physics. There is a wide variety of problems where such models are used to obtain reasonable physical as well as numerical results (Fluid Mechanics, Gas Dynamics, Plasma Physics, Nuclear Physics, Turbulence Theory etc.). The classical examples provide the nonlinear Boltzmann equation. Investigation of the long-time behavior of the solutions for the Boltzmann equation gives an approach to the nonlinear fluid dynamic equations. From the viewpoint of dynamical systems, the fluid dynamic equations arise in the theory as a tool to describe an attractor of the kinetic equation.
Publisher: World Scientific
ISBN: 9789810211622
Category : Mathematics
Languages : en
Pages : 210
Book Description
The book is devoted to the questions of the long-time behavior of solutions for evolution equations, connected with kinetic models in statistical physics. There is a wide variety of problems where such models are used to obtain reasonable physical as well as numerical results (Fluid Mechanics, Gas Dynamics, Plasma Physics, Nuclear Physics, Turbulence Theory etc.). The classical examples provide the nonlinear Boltzmann equation. Investigation of the long-time behavior of the solutions for the Boltzmann equation gives an approach to the nonlinear fluid dynamic equations. From the viewpoint of dynamical systems, the fluid dynamic equations arise in the theory as a tool to describe an attractor of the kinetic equation.