Author: Howard Charles Shaw
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 168
Book Description
Nonlinear Elliptic Boundary Value Problems at Resonance
Author: Howard Charles Shaw
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 168
Book Description
Publisher:
ISBN:
Category : Boundary value problems
Languages : en
Pages : 168
Book Description
Methods for Analysis of Nonlinear Elliptic Boundary Value Problems
Author: I. V. Skrypnik
Publisher: American Mathematical Soc.
ISBN: 9780821897560
Category : Mathematics
Languages : en
Pages : 370
Book Description
The theory of nonlinear elliptic equations is currently one of the most actively developing branches of the theory of partial differential equations. This book investigates boundary value problems for nonlinear elliptic equations of arbitrary order. In addition to monotone operator methods, a broad range of applications of topological methods to nonlinear differential equations is presented: solvability, estimation of the number of solutions, and the branching of solutions of nonlinear equations. Skrypnik establishes, by various procedures, a priori estimates and the regularity of solutions of nonlinear elliptic equations of arbitrary order. Also covered are methods of homogenization of nonlinear elliptic problems in perforated domains. The book is suitable for use in graduate courses in differential equations and nonlinear functional analysis.
Publisher: American Mathematical Soc.
ISBN: 9780821897560
Category : Mathematics
Languages : en
Pages : 370
Book Description
The theory of nonlinear elliptic equations is currently one of the most actively developing branches of the theory of partial differential equations. This book investigates boundary value problems for nonlinear elliptic equations of arbitrary order. In addition to monotone operator methods, a broad range of applications of topological methods to nonlinear differential equations is presented: solvability, estimation of the number of solutions, and the branching of solutions of nonlinear equations. Skrypnik establishes, by various procedures, a priori estimates and the regularity of solutions of nonlinear elliptic equations of arbitrary order. Also covered are methods of homogenization of nonlinear elliptic problems in perforated domains. The book is suitable for use in graduate courses in differential equations and nonlinear functional analysis.
Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations
Author: Vicentiu D. Radulescu
Publisher: Hindawi Publishing Corporation
ISBN: 9774540395
Category : Differential equations, Elliptic
Languages : en
Pages : 205
Book Description
This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.
Publisher: Hindawi Publishing Corporation
ISBN: 9774540395
Category : Differential equations, Elliptic
Languages : en
Pages : 205
Book Description
This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.
Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations
Author: Thomas Runst
Publisher: Walter de Gruyter
ISBN: 311081241X
Category : Mathematics
Languages : en
Pages : 561
Book Description
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.
Publisher: Walter de Gruyter
ISBN: 311081241X
Category : Mathematics
Languages : en
Pages : 561
Book Description
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Please submit book proposals to Jürgen Appell.
Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems
Author: Leszek Gasinski
Publisher: CRC Press
ISBN: 1420035037
Category : Mathematics
Languages : en
Pages : 790
Book Description
Starting in the early 1980s, people using the tools of nonsmooth analysis developed some remarkable nonsmooth extensions of the existing critical point theory. Until now, however, no one had gathered these tools and results together into a unified, systematic survey of these advances. This book fills that gap. It provides a complete presentation of nonsmooth critical point theory, then goes beyond it to study nonlinear second order boundary value problems. The authors do not limit their treatment to problems in variational form. They also examine in detail equations driven by the p-Laplacian, its generalizations, and their spectral properties, studying a wide variety of problems and illustrating the powerful tools of modern nonlinear analysis. The presentation includes many recent results, including some that were previously unpublished. Detailed appendices outline the fundamental mathematical tools used in the book, and a rich bibliography forms a guide to the relevant literature. Most books addressing critical point theory deal only with smooth problems, linear or semilinear problems, or consider only variational methods or the tools of nonlinear operators. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods for a wide variety of problems.
Publisher: CRC Press
ISBN: 1420035037
Category : Mathematics
Languages : en
Pages : 790
Book Description
Starting in the early 1980s, people using the tools of nonsmooth analysis developed some remarkable nonsmooth extensions of the existing critical point theory. Until now, however, no one had gathered these tools and results together into a unified, systematic survey of these advances. This book fills that gap. It provides a complete presentation of nonsmooth critical point theory, then goes beyond it to study nonlinear second order boundary value problems. The authors do not limit their treatment to problems in variational form. They also examine in detail equations driven by the p-Laplacian, its generalizations, and their spectral properties, studying a wide variety of problems and illustrating the powerful tools of modern nonlinear analysis. The presentation includes many recent results, including some that were previously unpublished. Detailed appendices outline the fundamental mathematical tools used in the book, and a rich bibliography forms a guide to the relevant literature. Most books addressing critical point theory deal only with smooth problems, linear or semilinear problems, or consider only variational methods or the tools of nonlinear operators. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems offers a comprehensive treatment of the subject that is up-to-date, self-contained, and rich in methods for a wide variety of problems.
Nonlinear Analysis
Author: Erich H. Rothe
Publisher: Academic Press
ISBN: 1483262545
Category : Mathematics
Languages : en
Pages : 253
Book Description
Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe is a collection of papers in honor of Erich H. Rothe, a mathematician who has made significant contributions to various aspects of nonlinear functional analysis. Topics covered range from periodic solutions of semilinear parabolic equations to nonlinear problems across a point of resonance for non-self-adjoint systems. Nonlinear boundary value problems for ordinary differential equations are also considered. Comprised of 14 chapters, this volume first discusses the use of fixed-point theorems in ordered Banach spaces to prove existence and multiplicity result for periodic solutions of semilinear parabolic differential equations of the second order. The reader is then introduced to linear maximal monotone operators and singular nonlinear integral equations of Hammerstein type. Subsequent chapters focus on the branching of periodic solutions of non-autonomous systems; restricted generic bifurcation; Tikhonov regularization and nonlinear problems at resonance; and minimax theorems and their applications to nonlinear partial differential equations. This monograph will be of interest to students and practitioners in the field of mathematics.
Publisher: Academic Press
ISBN: 1483262545
Category : Mathematics
Languages : en
Pages : 253
Book Description
Nonlinear Analysis: A Collection of Papers in Honor of Erich H. Rothe is a collection of papers in honor of Erich H. Rothe, a mathematician who has made significant contributions to various aspects of nonlinear functional analysis. Topics covered range from periodic solutions of semilinear parabolic equations to nonlinear problems across a point of resonance for non-self-adjoint systems. Nonlinear boundary value problems for ordinary differential equations are also considered. Comprised of 14 chapters, this volume first discusses the use of fixed-point theorems in ordered Banach spaces to prove existence and multiplicity result for periodic solutions of semilinear parabolic differential equations of the second order. The reader is then introduced to linear maximal monotone operators and singular nonlinear integral equations of Hammerstein type. Subsequent chapters focus on the branching of periodic solutions of non-autonomous systems; restricted generic bifurcation; Tikhonov regularization and nonlinear problems at resonance; and minimax theorems and their applications to nonlinear partial differential equations. This monograph will be of interest to students and practitioners in the field of mathematics.
Nonlinear Phenomena in Mathematical Sciences
Author: V. Lakshmikantham
Publisher: Elsevier
ISBN: 1483272052
Category : Mathematics
Languages : en
Pages : 1062
Book Description
Nonlinear Phenomena in Mathematical Sciences contains the proceedings of an International Conference on Nonlinear Phenomena in Mathematical Sciences, held at the University of Texas at Arlington, on June 16-20,1980. The papers explore trends in nonlinear phenomena in mathematical sciences, with emphasis on nonlinear functional analytic methods and their applications; nonlinear wave theory; and applications to medical and life sciences. In the area of nonlinear functional analytic methods and their applications, the following subjects are discussed: optimal control theory; periodic oscillations of nonlinear mechanical systems; Leray-Schauder degree theory; differential inequalities applied to parabolic and elliptic partial differential equations; bifurcation theory, stability theory in analytical mechanics; singular and ordinary boundary value problems, etc. The following topics in nonlinear wave theory are considered: nonlinear wave propagation in a randomly homogeneous media; periodic solutions of a semilinear wave equation; asymptotic behavior of solutions of strongly damped nonlinear wave equations; shock waves and dissipation theoretical methods for a nonlinear Schr?dinger equation; and nonlinear hyperbolic Volterra equations occurring in viscoelasticity. Applications to medical and life sciences include mathematical modeling in physiology, pharmacokinetics, and neuro-mathematics, along with epidemic modeling and parameter estimation techniques. This book will be helpful to students, practitioners, and researchers in the field of mathematics.
Publisher: Elsevier
ISBN: 1483272052
Category : Mathematics
Languages : en
Pages : 1062
Book Description
Nonlinear Phenomena in Mathematical Sciences contains the proceedings of an International Conference on Nonlinear Phenomena in Mathematical Sciences, held at the University of Texas at Arlington, on June 16-20,1980. The papers explore trends in nonlinear phenomena in mathematical sciences, with emphasis on nonlinear functional analytic methods and their applications; nonlinear wave theory; and applications to medical and life sciences. In the area of nonlinear functional analytic methods and their applications, the following subjects are discussed: optimal control theory; periodic oscillations of nonlinear mechanical systems; Leray-Schauder degree theory; differential inequalities applied to parabolic and elliptic partial differential equations; bifurcation theory, stability theory in analytical mechanics; singular and ordinary boundary value problems, etc. The following topics in nonlinear wave theory are considered: nonlinear wave propagation in a randomly homogeneous media; periodic solutions of a semilinear wave equation; asymptotic behavior of solutions of strongly damped nonlinear wave equations; shock waves and dissipation theoretical methods for a nonlinear Schr?dinger equation; and nonlinear hyperbolic Volterra equations occurring in viscoelasticity. Applications to medical and life sciences include mathematical modeling in physiology, pharmacokinetics, and neuro-mathematics, along with epidemic modeling and parameter estimation techniques. This book will be helpful to students, practitioners, and researchers in the field of mathematics.
Solvability of Nonlinear Equations and Boundary Value Problems
Author: Svatopluk Fucik
Publisher: Springer Science & Business Media
ISBN: 9789027710772
Category : Mathematics
Languages : en
Pages : 414
Book Description
Publisher: Springer Science & Business Media
ISBN: 9789027710772
Category : Mathematics
Languages : en
Pages : 414
Book Description
Generalized Functions and Their Applications
Author: R.S. Pathak
Publisher: Springer Science & Business Media
ISBN: 1489915915
Category : Social Science
Languages : en
Pages : 298
Book Description
The International Symposium on Generalized Functions and Their Applications was organized by the Department of Mathematics, Banaras Hindu University, and held December 23-26, 1991, on the occasion of the Platinum Jubilee Celebration of the university. More than a hundred mathematicians from ten countries participated in the deliberations of the symposium. Thirty lectures were delivered on a variety of topics within the area. The contributions to the proceedings of the symposium are, with a few exceptions, expanded versions of the lectures delivered by the invited speakers. The survey papers by Komatsu and Hoskins and Sousa Pinto provide an up-to-date account of the theory of hyperfunctions, ultradistributions and microfunctions, and the nonstandard theory of new generalized functions, respectively; those by Stankovic and Kanwal deal with structures and asymptotics. Choquet-Bruhat's work studies generalized functions on manifold and gives applications to shocks and discrete models. The other contributions relate to contemporary problems and achievements in theory and applications, especially in the theory of partial differential equations, differential geometry, mechanics, mathematical physics, and systems science. The proceedings give a very clear impression of the present state of the art in this field and contain many challenges, ideas, and open problems. The volume is very helpful for a broad spectrum of readers: graduate students to mathematical researchers.
Publisher: Springer Science & Business Media
ISBN: 1489915915
Category : Social Science
Languages : en
Pages : 298
Book Description
The International Symposium on Generalized Functions and Their Applications was organized by the Department of Mathematics, Banaras Hindu University, and held December 23-26, 1991, on the occasion of the Platinum Jubilee Celebration of the university. More than a hundred mathematicians from ten countries participated in the deliberations of the symposium. Thirty lectures were delivered on a variety of topics within the area. The contributions to the proceedings of the symposium are, with a few exceptions, expanded versions of the lectures delivered by the invited speakers. The survey papers by Komatsu and Hoskins and Sousa Pinto provide an up-to-date account of the theory of hyperfunctions, ultradistributions and microfunctions, and the nonstandard theory of new generalized functions, respectively; those by Stankovic and Kanwal deal with structures and asymptotics. Choquet-Bruhat's work studies generalized functions on manifold and gives applications to shocks and discrete models. The other contributions relate to contemporary problems and achievements in theory and applications, especially in the theory of partial differential equations, differential geometry, mechanics, mathematical physics, and systems science. The proceedings give a very clear impression of the present state of the art in this field and contain many challenges, ideas, and open problems. The volume is very helpful for a broad spectrum of readers: graduate students to mathematical researchers.
Nonlinear Systems and Applications
Author: V. Lakshmikantham
Publisher: Elsevier
ISBN: 1483272249
Category : Mathematics
Languages : en
Pages : 717
Book Description
Nonlinear Systems and Applications: An International Conference contains the proceedings of an International Conference on Nonlinear Systems and Applications held at the University of Texas at Arlington, on July 19-23, 1976. The conference provided a forum for reviewing advances in nonlinear systems and their applications and tackled a wide array of topics ranging from abstract evolution equations and nonlinear semigroups to controllability and reachability. Various methods used in solving equations are also discussed, including approximation techniques for delay systems. Most of the applications are in the area of the life sciences. Comprised of 59 chapters, this book begins with a discussion on monotonically convergent upper and lower bounds for classes of conflicting populations, followed by an analysis of constrained problems. The reader is then introduced to approximation techniques for delay systems in biological models; differential inequalities for Liapunov functions; and stability or chaos in discrete epidemic models. Subsequent chapters deal with nonlinear boundary value problems for elliptic systems; bounds for solutions of reaction-diffusion equations; monotonicity and measurability; and periodic solutions of some integral equations from the theory of epidemics. This monograph will be helpful to students, practitioners, and researchers in the field of mathematics.
Publisher: Elsevier
ISBN: 1483272249
Category : Mathematics
Languages : en
Pages : 717
Book Description
Nonlinear Systems and Applications: An International Conference contains the proceedings of an International Conference on Nonlinear Systems and Applications held at the University of Texas at Arlington, on July 19-23, 1976. The conference provided a forum for reviewing advances in nonlinear systems and their applications and tackled a wide array of topics ranging from abstract evolution equations and nonlinear semigroups to controllability and reachability. Various methods used in solving equations are also discussed, including approximation techniques for delay systems. Most of the applications are in the area of the life sciences. Comprised of 59 chapters, this book begins with a discussion on monotonically convergent upper and lower bounds for classes of conflicting populations, followed by an analysis of constrained problems. The reader is then introduced to approximation techniques for delay systems in biological models; differential inequalities for Liapunov functions; and stability or chaos in discrete epidemic models. Subsequent chapters deal with nonlinear boundary value problems for elliptic systems; bounds for solutions of reaction-diffusion equations; monotonicity and measurability; and periodic solutions of some integral equations from the theory of epidemics. This monograph will be helpful to students, practitioners, and researchers in the field of mathematics.