Author: Joshua M. Epstein
Publisher: CRC Press
ISBN: 0429973039
Category : Mathematics
Languages : en
Pages : 132
Book Description
This book is based on a series of lectures on mathematical biology, the essential dynamics of complex and crucially important social systems, and the unifying power of mathematics and nonlinear dynamical systems theory.
Nonlinear Dynamics, Mathematical Biology, And Social Science
Author: Joshua M. Epstein
Publisher: CRC Press
ISBN: 0429973039
Category : Mathematics
Languages : en
Pages : 132
Book Description
This book is based on a series of lectures on mathematical biology, the essential dynamics of complex and crucially important social systems, and the unifying power of mathematics and nonlinear dynamical systems theory.
Publisher: CRC Press
ISBN: 0429973039
Category : Mathematics
Languages : en
Pages : 132
Book Description
This book is based on a series of lectures on mathematical biology, the essential dynamics of complex and crucially important social systems, and the unifying power of mathematics and nonlinear dynamical systems theory.
Biological Systems: Nonlinear Dynamics Approach
Author: Jorge Carballido-Landeira
Publisher: Springer
ISBN: 303016585X
Category : Mathematics
Languages : en
Pages : 111
Book Description
This book collects recent advances in the field of nonlinear dynamics in biological systems. Focusing on medical applications as well as more fundamental questions in biochemistry, it presents recent findings in areas such as control in chemically driven reaction-diffusion systems, electrical wave propagation through heart tissue, neural network growth, chiral symmetry breaking in polymers and mechanochemical pattern formation in the cytoplasm, particularly in the context of cardiac cells. It is a compilation of works, including contributions from international scientists who attended the “2nd BCAM Workshop on Nonlinear Dynamics in Biological Systems,” held at the Basque Center for Applied Mathematics, Bilbao in September 2016. Embracing diverse disciplines and using multidisciplinary approaches – including theoretical concepts, simulations and experiments – these contributions highlight the nonlinear nature of biological systems in order to be able to reproduce their complex behavior. Edited by the conference organizers and featuring results that represent recent findings and not necessarily those presented at the conference, the book appeals to applied mathematicians, biophysicists and computational biologists.
Publisher: Springer
ISBN: 303016585X
Category : Mathematics
Languages : en
Pages : 111
Book Description
This book collects recent advances in the field of nonlinear dynamics in biological systems. Focusing on medical applications as well as more fundamental questions in biochemistry, it presents recent findings in areas such as control in chemically driven reaction-diffusion systems, electrical wave propagation through heart tissue, neural network growth, chiral symmetry breaking in polymers and mechanochemical pattern formation in the cytoplasm, particularly in the context of cardiac cells. It is a compilation of works, including contributions from international scientists who attended the “2nd BCAM Workshop on Nonlinear Dynamics in Biological Systems,” held at the Basque Center for Applied Mathematics, Bilbao in September 2016. Embracing diverse disciplines and using multidisciplinary approaches – including theoretical concepts, simulations and experiments – these contributions highlight the nonlinear nature of biological systems in order to be able to reproduce their complex behavior. Edited by the conference organizers and featuring results that represent recent findings and not necessarily those presented at the conference, the book appeals to applied mathematicians, biophysicists and computational biologists.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Nonlinear Dynamics of Interacting Populations
Author: A. D. Bazykin
Publisher: World Scientific
ISBN: 9789810216856
Category : Science
Languages : en
Pages : 224
Book Description
This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of “dangerous boundaries” in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory.
Publisher: World Scientific
ISBN: 9789810216856
Category : Science
Languages : en
Pages : 224
Book Description
This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of “dangerous boundaries” in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory.
Understanding Nonlinear Dynamics
Author: Daniel Kaplan
Publisher: Springer Science & Business Media
ISBN: 1461208238
Category : Mathematics
Languages : en
Pages : 438
Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.
Publisher: Springer Science & Business Media
ISBN: 1461208238
Category : Mathematics
Languages : en
Pages : 438
Book Description
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.
Nonlinear Dynamics in Economics and Social Sciences
Author: Franco Gori
Publisher: Springer Science & Business Media
ISBN: 3642580319
Category : Business & Economics
Languages : en
Pages : 371
Book Description
This volume constitutes the Proceedings of the "Nonlinear Dynamics in Economics and Social Sciences" Meeting held at the Certosa di Pontignano, Siena, on May 27-30, 1991. The Meeting was organized by the National Group "Modelli Nonlineari in Economia e Dinamiche Complesse" of the Italian Ministery of University and SCientific Research, M.U.RS.T. The aim of the Conference, which followed a previous analogous initiative taking place in the very same Certosa, on January 1988*, was the one of offering a come together opportunity to economists interested in a new mathematical approach to the modelling of economical processes, through the use of more advanced analytical techniques, and mathematicians acting in the field of global dynamical systems theory and applications. A basiC underlying idea drove the organizers: the necessity of fOCUSing on the use that recent methods and results, as those commonly referred to the overpopularized label of "Chaotic Dynamics", did find in the social sciences domain; and thus to check their actual relevance in the research program of modelling economic phenomena, in order to individuate and stress promising perspectives, as well as to curb excessive hopes and criticize not infrequent cases where research reduces to mechanical, ad hoc, applications of "a la mode" techniques. In a word we felt the need of looking about the state of the arts in non-linear systems theory applications to economics and social processes: hence the title of the workshop and the volume.
Publisher: Springer Science & Business Media
ISBN: 3642580319
Category : Business & Economics
Languages : en
Pages : 371
Book Description
This volume constitutes the Proceedings of the "Nonlinear Dynamics in Economics and Social Sciences" Meeting held at the Certosa di Pontignano, Siena, on May 27-30, 1991. The Meeting was organized by the National Group "Modelli Nonlineari in Economia e Dinamiche Complesse" of the Italian Ministery of University and SCientific Research, M.U.RS.T. The aim of the Conference, which followed a previous analogous initiative taking place in the very same Certosa, on January 1988*, was the one of offering a come together opportunity to economists interested in a new mathematical approach to the modelling of economical processes, through the use of more advanced analytical techniques, and mathematicians acting in the field of global dynamical systems theory and applications. A basiC underlying idea drove the organizers: the necessity of fOCUSing on the use that recent methods and results, as those commonly referred to the overpopularized label of "Chaotic Dynamics", did find in the social sciences domain; and thus to check their actual relevance in the research program of modelling economic phenomena, in order to individuate and stress promising perspectives, as well as to curb excessive hopes and criticize not infrequent cases where research reduces to mechanical, ad hoc, applications of "a la mode" techniques. In a word we felt the need of looking about the state of the arts in non-linear systems theory applications to economics and social processes: hence the title of the workshop and the volume.
Modeling Life
Author: Alan Garfinkel
Publisher: Springer
ISBN: 3319597310
Category : Mathematics
Languages : en
Pages : 456
Book Description
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Publisher: Springer
ISBN: 3319597310
Category : Mathematics
Languages : en
Pages : 456
Book Description
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?
Nonlinear Dynamics in Economics, Finance and the Social Sciences
Author: Gian Italo Bischi
Publisher: Springer Science & Business Media
ISBN: 3642040233
Category : Business & Economics
Languages : en
Pages : 384
Book Description
Over the last two decades there has been a great deal of research into nonlinear dynamic models in economics, finance and the social sciences. This book contains twenty papers that range over very recent applications in these areas. Topics covered include structural change and economic growth, disequilibrium dynamics and economic policy as well as models with boundedly rational agents. The book illustrates some of the most recent research tools in this area and will be of interest to economists working in economic dynamics and to mathematicians interested in seeing ideas from nonlinear dynamics and complexity theory applied to the economic sciences.
Publisher: Springer Science & Business Media
ISBN: 3642040233
Category : Business & Economics
Languages : en
Pages : 384
Book Description
Over the last two decades there has been a great deal of research into nonlinear dynamic models in economics, finance and the social sciences. This book contains twenty papers that range over very recent applications in these areas. Topics covered include structural change and economic growth, disequilibrium dynamics and economic policy as well as models with boundedly rational agents. The book illustrates some of the most recent research tools in this area and will be of interest to economists working in economic dynamics and to mathematicians interested in seeing ideas from nonlinear dynamics and complexity theory applied to the economic sciences.
The Blackwell Guide to the Philosophy of the Social Sciences
Author: Stephen P. Turner
Publisher: John Wiley & Sons
ISBN: 0470701536
Category : Philosophy
Languages : en
Pages : 393
Book Description
The Blackwell Guide to the Philosophy of the Social Sciences collects newly commissioned essays that examine fundamental issues in the social sciences.
Publisher: John Wiley & Sons
ISBN: 0470701536
Category : Philosophy
Languages : en
Pages : 393
Book Description
The Blackwell Guide to the Philosophy of the Social Sciences collects newly commissioned essays that examine fundamental issues in the social sciences.
Complex Systems in the Social and Behavioral Sciences
Author: L. Douglas Kiel
Publisher: University of Michigan Press
ISBN: 0472128922
Category : Political Science
Languages : en
Pages : 371
Book Description
Complexity Systems in the Social and Behavioral Sciences provides a sophisticated yet accessible account of complexity science or complex systems research. Phenomena in the behavioral, social, and hard sciences all exhibit certain important similarities consistent with complex systems. These include the concept of emergence, sensitivity to initial conditions, and interactions between agents in a system that yield unanticipated, nonlinear outcomes. The topics discussed range from the implications for artificial intelligence and computing to questions about how to model complex systems through agent-based modeling, to complex phenomena exhibited in international relations, and in organizational behavior. This volume will be an invaluable addition for both the general reader and the specialist, offering new insights into this fascinating area of research.
Publisher: University of Michigan Press
ISBN: 0472128922
Category : Political Science
Languages : en
Pages : 371
Book Description
Complexity Systems in the Social and Behavioral Sciences provides a sophisticated yet accessible account of complexity science or complex systems research. Phenomena in the behavioral, social, and hard sciences all exhibit certain important similarities consistent with complex systems. These include the concept of emergence, sensitivity to initial conditions, and interactions between agents in a system that yield unanticipated, nonlinear outcomes. The topics discussed range from the implications for artificial intelligence and computing to questions about how to model complex systems through agent-based modeling, to complex phenomena exhibited in international relations, and in organizational behavior. This volume will be an invaluable addition for both the general reader and the specialist, offering new insights into this fascinating area of research.