Author: Zhong-Ke Gao
Publisher: Springer Science & Business Media
ISBN: 3642383734
Category : Technology & Engineering
Languages : en
Pages : 109
Book Description
Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent and the network information entropy are sensitive to the transition among different flow patterns, which can be used to characterize nonlinear dynamics of the two-phase flow. FSCNs were constructed in the phase space through a general approach that we introduced. The statistical properties of FSCN can provide quantitative insight into the fluid structure of two-phase flow. These interesting and significant findings suggest that complex networks can be a potentially powerful tool for uncovering the nonlinear dynamics of two-phase flows.
Nonlinear Analysis of Gas-Water/Oil-Water Two-Phase Flow in Complex Networks
Author: Zhong-Ke Gao
Publisher: Springer Science & Business Media
ISBN: 3642383734
Category : Technology & Engineering
Languages : en
Pages : 109
Book Description
Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent and the network information entropy are sensitive to the transition among different flow patterns, which can be used to characterize nonlinear dynamics of the two-phase flow. FSCNs were constructed in the phase space through a general approach that we introduced. The statistical properties of FSCN can provide quantitative insight into the fluid structure of two-phase flow. These interesting and significant findings suggest that complex networks can be a potentially powerful tool for uncovering the nonlinear dynamics of two-phase flows.
Publisher: Springer Science & Business Media
ISBN: 3642383734
Category : Technology & Engineering
Languages : en
Pages : 109
Book Description
Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent and the network information entropy are sensitive to the transition among different flow patterns, which can be used to characterize nonlinear dynamics of the two-phase flow. FSCNs were constructed in the phase space through a general approach that we introduced. The statistical properties of FSCN can provide quantitative insight into the fluid structure of two-phase flow. These interesting and significant findings suggest that complex networks can be a potentially powerful tool for uncovering the nonlinear dynamics of two-phase flows.
Condition monitoring for renewable energy systems, volume II
Author: Yusen He
Publisher: Frontiers Media SA
ISBN: 2832514995
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
Publisher: Frontiers Media SA
ISBN: 2832514995
Category : Technology & Engineering
Languages : en
Pages : 227
Book Description
Recurrence Quantification Analysis
Author: Charles L. Webber, Jr.
Publisher: Springer
ISBN: 3319071556
Category : Science
Languages : en
Pages : 426
Book Description
The analysis of recurrences in dynamical systems by using recurrence plots and their quantification is still an emerging field. Over the past decades recurrence plots have proven to be valuable data visualization and analysis tools in the theoretical study of complex, time-varying dynamical systems as well as in various applications in biology, neuroscience, kinesiology, psychology, physiology, engineering, physics, geosciences, linguistics, finance, economics, and other disciplines. This multi-authored book intends to comprehensively introduce and showcase recent advances as well as established best practices concerning both theoretical and practical aspects of recurrence plot based analysis. Edited and authored by leading researcher in the field, the various chapters address an interdisciplinary readership, ranging from theoretical physicists to application-oriented scientists in all data-providing disciplines.
Publisher: Springer
ISBN: 3319071556
Category : Science
Languages : en
Pages : 426
Book Description
The analysis of recurrences in dynamical systems by using recurrence plots and their quantification is still an emerging field. Over the past decades recurrence plots have proven to be valuable data visualization and analysis tools in the theoretical study of complex, time-varying dynamical systems as well as in various applications in biology, neuroscience, kinesiology, psychology, physiology, engineering, physics, geosciences, linguistics, finance, economics, and other disciplines. This multi-authored book intends to comprehensively introduce and showcase recent advances as well as established best practices concerning both theoretical and practical aspects of recurrence plot based analysis. Edited and authored by leading researcher in the field, the various chapters address an interdisciplinary readership, ranging from theoretical physicists to application-oriented scientists in all data-providing disciplines.
Fundamentals of Horizontal Wellbore Cleanout
Author: Xianzhi Song
Publisher: Gulf Professional Publishing
ISBN: 0323858775
Category : Science
Languages : en
Pages : 254
Book Description
Fundamentals of Horizontal Wellbore Cleanout delivers the latest methods regarding effective sand cleanout tools in horizontal wellbores. Providing the most relevant information, including sand bed formation, sand settling velocity, friction and hydraulics, this book covers the most effective tools and emerging technologies. Sections discuss the settling characteristics of sand and the effects of particle shape and size on drag coefficients, along with models for drag coefficients using experimental data. Numerical studies on sand transport efficiency as well as prediction models of sand concentration and an evaluation of friction between pipe and sand bed are also included. Illustrative case studies include cleanout with varying nozzle assemblies leading to optimum design on operation procedures, bottomhole assembly, and other lessons learned from known field experience. Rounding out with future research on cost-saving strategies including CO2 used as a washing fluid in water-sensitive formations, Fundamentals of Horizontal Wellbore Cleanout gives today's petroleum and drilling engineers alternative methods to hole cleaning in today's horizontal wells. - Presents flowcharts, methods and field studies to help readers develop cost-saving strategies and optimal performance - Helps users build their own models using the experimental data provided - Guides readers on how to build research and operation capabilities by providing extensive literature reviews and references
Publisher: Gulf Professional Publishing
ISBN: 0323858775
Category : Science
Languages : en
Pages : 254
Book Description
Fundamentals of Horizontal Wellbore Cleanout delivers the latest methods regarding effective sand cleanout tools in horizontal wellbores. Providing the most relevant information, including sand bed formation, sand settling velocity, friction and hydraulics, this book covers the most effective tools and emerging technologies. Sections discuss the settling characteristics of sand and the effects of particle shape and size on drag coefficients, along with models for drag coefficients using experimental data. Numerical studies on sand transport efficiency as well as prediction models of sand concentration and an evaluation of friction between pipe and sand bed are also included. Illustrative case studies include cleanout with varying nozzle assemblies leading to optimum design on operation procedures, bottomhole assembly, and other lessons learned from known field experience. Rounding out with future research on cost-saving strategies including CO2 used as a washing fluid in water-sensitive formations, Fundamentals of Horizontal Wellbore Cleanout gives today's petroleum and drilling engineers alternative methods to hole cleaning in today's horizontal wells. - Presents flowcharts, methods and field studies to help readers develop cost-saving strategies and optimal performance - Helps users build their own models using the experimental data provided - Guides readers on how to build research and operation capabilities by providing extensive literature reviews and references
Multiphase Flow and Heat Transfer in Pebble Bed Reactor Core
Author: Shengyao Jiang
Publisher: Springer Nature
ISBN: 9811595658
Category : Science
Languages : en
Pages : 510
Book Description
This book introduces readers to gas flows and heat transfer in pebble bed reactor cores. It addresses fundamental issues regarding experimental and modeling methods for complex multiphase systems, as well as relevant applications and recent research advances. The numerical methods and experimental measurements/techniques used to solve pebble flows, as well as the content on radiation modeling for high-temperature pebble beds, will be of particular interest. This book is intended for a broad readership, including researchers and practitioners, and is sure to become a key reference resource for students and professionals alike.
Publisher: Springer Nature
ISBN: 9811595658
Category : Science
Languages : en
Pages : 510
Book Description
This book introduces readers to gas flows and heat transfer in pebble bed reactor cores. It addresses fundamental issues regarding experimental and modeling methods for complex multiphase systems, as well as relevant applications and recent research advances. The numerical methods and experimental measurements/techniques used to solve pebble flows, as well as the content on radiation modeling for high-temperature pebble beds, will be of particular interest. This book is intended for a broad readership, including researchers and practitioners, and is sure to become a key reference resource for students and professionals alike.
Encyclopedia of Renewable Energy, Sustainability and the Environment
Author:
Publisher: Elsevier
ISBN: 0323939414
Category : Science
Languages : en
Pages : 4061
Book Description
Encyclopedia of Renewable Energy, Sustainability and the Environment, Four Volume Set comprehensively covers all renewable energy resources, including wind, solar, hydro, biomass, geothermal energy, and nuclear power, to name a few. In addition to covering the breadth of renewable energy resources at a fundamental level, this encyclopedia delves into the utilization and ideal applications of each resource and assesses them from environmental, economic, and policy standpoints. This book will serve as an ideal introduction to any renewable energy source for students, while also allowing them to learn about a topic in more depth and explore related topics, all in a single resource.Instructors, researchers, and industry professionals will also benefit from this comprehensive reference. - Covers all renewable energy technologies in one comprehensive resource - Details renewable energies' processes, from production to utilization in a single encyclopedia - Organizes topics into concise, consistently formatted chapters, perfect for readers who are new to the field - Assesses economic challenges faced to implement each type of renewable energy - Addresses the challenges of replacing fossil fuels with renewables and covers the environmental impacts of each renewable energy
Publisher: Elsevier
ISBN: 0323939414
Category : Science
Languages : en
Pages : 4061
Book Description
Encyclopedia of Renewable Energy, Sustainability and the Environment, Four Volume Set comprehensively covers all renewable energy resources, including wind, solar, hydro, biomass, geothermal energy, and nuclear power, to name a few. In addition to covering the breadth of renewable energy resources at a fundamental level, this encyclopedia delves into the utilization and ideal applications of each resource and assesses them from environmental, economic, and policy standpoints. This book will serve as an ideal introduction to any renewable energy source for students, while also allowing them to learn about a topic in more depth and explore related topics, all in a single resource.Instructors, researchers, and industry professionals will also benefit from this comprehensive reference. - Covers all renewable energy technologies in one comprehensive resource - Details renewable energies' processes, from production to utilization in a single encyclopedia - Organizes topics into concise, consistently formatted chapters, perfect for readers who are new to the field - Assesses economic challenges faced to implement each type of renewable energy - Addresses the challenges of replacing fossil fuels with renewables and covers the environmental impacts of each renewable energy
Essentials of Multiphase Flow and Transport in Porous Media
Author: George F. Pinder
Publisher: John Wiley & Sons
ISBN: 0470380799
Category : Technology & Engineering
Languages : en
Pages : 273
Book Description
Learn the fundamental concepts that underlie the physics of multiphase flow and transport in porous media with the information in Essentials of Multiphase Flow in Porous Media, which demonstrates the mathematical-physical ways to express and address multiphase flow problems. Find a logical, step-by-step introduction to everything from the simple concepts to the advanced equations useful for addressing real-world problems like infiltration, groundwater contamination, and movement of non-aqueous phase liquids. Discover and apply the governing equations for application to these and other problems in light of the physics that influence system behavior.
Publisher: John Wiley & Sons
ISBN: 0470380799
Category : Technology & Engineering
Languages : en
Pages : 273
Book Description
Learn the fundamental concepts that underlie the physics of multiphase flow and transport in porous media with the information in Essentials of Multiphase Flow in Porous Media, which demonstrates the mathematical-physical ways to express and address multiphase flow problems. Find a logical, step-by-step introduction to everything from the simple concepts to the advanced equations useful for addressing real-world problems like infiltration, groundwater contamination, and movement of non-aqueous phase liquids. Discover and apply the governing equations for application to these and other problems in light of the physics that influence system behavior.
Petroleum Abstracts
Author:
Publisher:
ISBN:
Category : Petroleum
Languages : en
Pages : 776
Book Description
Publisher:
ISBN:
Category : Petroleum
Languages : en
Pages : 776
Book Description
Applied mechanics reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400
Book Description
Federal Energy Administration Project Independence Blueprint
Author: United States. Federal Energy Administration
Publisher:
ISBN:
Category : Energy security
Languages : en
Pages : 700
Book Description
Publisher:
ISBN:
Category : Energy security
Languages : en
Pages : 700
Book Description