Author: Constantino Tsallis
Publisher: Springer Nature
ISBN: 3030795691
Category : Science
Languages : en
Pages : 575
Book Description
This book focuses on nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs (BG) statistical mechanics. Conceived nearly 150 years ago by Maxwell, Boltzmann and Gibbs, the BG theory, one of the greatest monuments of contemporary physics, exhibits many impressive successes in physics, chemistry, mathematics, and computational sciences. Presently, several thousands of publications by scientists around the world have been dedicated to its nonextensive generalization. A variety of applications have emerged in complex systems and its mathematical grounding is by now well advanced. Since the first edition release thirteen years ago, there has been a vast amount of new results in the field, all of which have been incorporated in this comprehensive second edition. Heavily revised and updated with new sections and figures, the second edition remains the go-to text on the subject. A pedagogical introduction to the BG theory concepts and their generalizations – nonlinear dynamics, extensivity of the nonadditive entropy, global correlations, generalization of the standard CLT’s, complex networks, among others – is presented in this book, as well as a selection of paradigmatic applications in various sciences together with diversified experimental verifications of some of its predictions. Introduction to Nonextensive Statistical Mechanics is suitable for students and researchers with an interest in complex systems and statistical physics.
Introduction to Nonextensive Statistical Mechanics
Author: Constantino Tsallis
Publisher: Springer Nature
ISBN: 3030795691
Category : Science
Languages : en
Pages : 575
Book Description
This book focuses on nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs (BG) statistical mechanics. Conceived nearly 150 years ago by Maxwell, Boltzmann and Gibbs, the BG theory, one of the greatest monuments of contemporary physics, exhibits many impressive successes in physics, chemistry, mathematics, and computational sciences. Presently, several thousands of publications by scientists around the world have been dedicated to its nonextensive generalization. A variety of applications have emerged in complex systems and its mathematical grounding is by now well advanced. Since the first edition release thirteen years ago, there has been a vast amount of new results in the field, all of which have been incorporated in this comprehensive second edition. Heavily revised and updated with new sections and figures, the second edition remains the go-to text on the subject. A pedagogical introduction to the BG theory concepts and their generalizations – nonlinear dynamics, extensivity of the nonadditive entropy, global correlations, generalization of the standard CLT’s, complex networks, among others – is presented in this book, as well as a selection of paradigmatic applications in various sciences together with diversified experimental verifications of some of its predictions. Introduction to Nonextensive Statistical Mechanics is suitable for students and researchers with an interest in complex systems and statistical physics.
Publisher: Springer Nature
ISBN: 3030795691
Category : Science
Languages : en
Pages : 575
Book Description
This book focuses on nonextensive statistical mechanics, a current generalization of Boltzmann-Gibbs (BG) statistical mechanics. Conceived nearly 150 years ago by Maxwell, Boltzmann and Gibbs, the BG theory, one of the greatest monuments of contemporary physics, exhibits many impressive successes in physics, chemistry, mathematics, and computational sciences. Presently, several thousands of publications by scientists around the world have been dedicated to its nonextensive generalization. A variety of applications have emerged in complex systems and its mathematical grounding is by now well advanced. Since the first edition release thirteen years ago, there has been a vast amount of new results in the field, all of which have been incorporated in this comprehensive second edition. Heavily revised and updated with new sections and figures, the second edition remains the go-to text on the subject. A pedagogical introduction to the BG theory concepts and their generalizations – nonlinear dynamics, extensivity of the nonadditive entropy, global correlations, generalization of the standard CLT’s, complex networks, among others – is presented in this book, as well as a selection of paradigmatic applications in various sciences together with diversified experimental verifications of some of its predictions. Introduction to Nonextensive Statistical Mechanics is suitable for students and researchers with an interest in complex systems and statistical physics.
Kappa Distributions
Author: George Livadiotis
Publisher: Elsevier
ISBN: 0128046392
Category : Science
Languages : en
Pages : 740
Book Description
Kappa Distributions: Theory and Applications in Plasmas presents the theoretical developments of kappa distributions, their applications in plasmas, and how they affect the underpinnings of our understanding of space and plasma physics, astrophysics, and statistical mechanics/thermodynamics. Separated into three major parts, the book covers theoretical methods, analytical methods in plasmas, and applications in space plasmas. The first part of the book focuses on basic aspects of the statistical theory of kappa distributions, beginning with their connection to the solid backgrounds of non-extensive statistical mechanics. The book then moves on to plasma physics, and is devoted to analytical methods related to kappa distributions on various basic plasma topics, spanning linear/nonlinear plasma waves, solitons, shockwaves, and dusty plasmas. The final part of the book deals with applications in space plasmas, focusing on applications of theoretical and analytical developments in space plasmas from the heliosphere and beyond, in other astrophysical plasmas. Kappa Distributions is ideal for space, plasma, and statistical physicists; geophysicists, especially of the upper atmosphere; Earth and planetary scientists; and astrophysicists. - Answers important questions, such as how plasma waves are affected by kappa distributions and how solar wind, magnetospheres, and other geophysical, space, and astrophysical plasmas can be modeled using kappa distributions - Presents the features of kappa distributions in the context of plasmas, including how kappa indices, temperatures, and densities vary among the species populations in different plasmas - Provides readers with the information they need to decide which specific formula of kappa distribution should be used for a certain occasion and system (toolbox)
Publisher: Elsevier
ISBN: 0128046392
Category : Science
Languages : en
Pages : 740
Book Description
Kappa Distributions: Theory and Applications in Plasmas presents the theoretical developments of kappa distributions, their applications in plasmas, and how they affect the underpinnings of our understanding of space and plasma physics, astrophysics, and statistical mechanics/thermodynamics. Separated into three major parts, the book covers theoretical methods, analytical methods in plasmas, and applications in space plasmas. The first part of the book focuses on basic aspects of the statistical theory of kappa distributions, beginning with their connection to the solid backgrounds of non-extensive statistical mechanics. The book then moves on to plasma physics, and is devoted to analytical methods related to kappa distributions on various basic plasma topics, spanning linear/nonlinear plasma waves, solitons, shockwaves, and dusty plasmas. The final part of the book deals with applications in space plasmas, focusing on applications of theoretical and analytical developments in space plasmas from the heliosphere and beyond, in other astrophysical plasmas. Kappa Distributions is ideal for space, plasma, and statistical physicists; geophysicists, especially of the upper atmosphere; Earth and planetary scientists; and astrophysicists. - Answers important questions, such as how plasma waves are affected by kappa distributions and how solar wind, magnetospheres, and other geophysical, space, and astrophysical plasmas can be modeled using kappa distributions - Presents the features of kappa distributions in the context of plasmas, including how kappa indices, temperatures, and densities vary among the species populations in different plasmas - Provides readers with the information they need to decide which specific formula of kappa distribution should be used for a certain occasion and system (toolbox)
Generalised Thermostatistics
Author: Jan Naudts
Publisher: Springer Science & Business Media
ISBN: 0857293559
Category : Mathematics
Languages : en
Pages : 209
Book Description
The domain of non-extensive thermostatistics has been subject to intensive research over the past twenty years and has matured significantly. Generalised Thermostatistics cuts through the traditionalism of many statistical physics texts by offering a fresh perspective and seeking to remove elements of doubt and confusion surrounding the area. The book is divided into two parts - the first covering topics from conventional statistical physics, whilst adopting the perspective that statistical physics is statistics applied to physics. The second developing the formalism of non-extensive thermostatistics, of which the central role is played by the notion of a deformed exponential family of probability distributions. Presented in a clear, consistent, and deductive manner, the book focuses on theory, part of which is developed by the author himself, but also provides a number of references towards application-based texts. Written by a leading contributor in the field, this book will provide a useful tool for learning about recent developments in generalized versions of statistical mechanics and thermodynamics, especially with respect to self-study. Written for researchers in theoretical physics, mathematics and statistical mechanics, as well as graduates of physics, mathematics or engineering. A prerequisite knowledge of elementary notions of statistical physics and a substantial mathematical background are required.
Publisher: Springer Science & Business Media
ISBN: 0857293559
Category : Mathematics
Languages : en
Pages : 209
Book Description
The domain of non-extensive thermostatistics has been subject to intensive research over the past twenty years and has matured significantly. Generalised Thermostatistics cuts through the traditionalism of many statistical physics texts by offering a fresh perspective and seeking to remove elements of doubt and confusion surrounding the area. The book is divided into two parts - the first covering topics from conventional statistical physics, whilst adopting the perspective that statistical physics is statistics applied to physics. The second developing the formalism of non-extensive thermostatistics, of which the central role is played by the notion of a deformed exponential family of probability distributions. Presented in a clear, consistent, and deductive manner, the book focuses on theory, part of which is developed by the author himself, but also provides a number of references towards application-based texts. Written by a leading contributor in the field, this book will provide a useful tool for learning about recent developments in generalized versions of statistical mechanics and thermodynamics, especially with respect to self-study. Written for researchers in theoretical physics, mathematics and statistical mechanics, as well as graduates of physics, mathematics or engineering. A prerequisite knowledge of elementary notions of statistical physics and a substantial mathematical background are required.
Nonextensive Entropy
Author: Murray Gell-Mann
Publisher: Oxford University Press
ISBN: 9780198036210
Category : Science
Languages : en
Pages : 440
Book Description
A great variety of complex phenomena in many scientific fields exhibit power-law behavior, reflecting a hierarchical or fractal structure. Many of these phenomena seem to be susceptible to description using approaches drawn from thermodynamics or statistical mechanics, particularly approaches involving the maximization of entropy and of Boltzmann-Gibbs statistical mechanics and standard laws in a natural way. The book addresses the interdisciplinary applications of these ideas, and also on various phenomena that could possibly be quantitatively describable in terms of these ideas.
Publisher: Oxford University Press
ISBN: 9780198036210
Category : Science
Languages : en
Pages : 440
Book Description
A great variety of complex phenomena in many scientific fields exhibit power-law behavior, reflecting a hierarchical or fractal structure. Many of these phenomena seem to be susceptible to description using approaches drawn from thermodynamics or statistical mechanics, particularly approaches involving the maximization of entropy and of Boltzmann-Gibbs statistical mechanics and standard laws in a natural way. The book addresses the interdisciplinary applications of these ideas, and also on various phenomena that could possibly be quantitatively describable in terms of these ideas.
Kappa Distributions
Author: Marian Lazar
Publisher: Springer Nature
ISBN: 3030826236
Category : Science
Languages : en
Pages : 326
Book Description
This book presents recent results on the modelling of space plasmas with Kappa distributions and their interpretation. Hot and dilute space plasmas most often do not reach thermal equilibrium, their dynamics being essentially conditioned by the kinetic effects of plasma particles, i.e., electrons, protons, and heavier ions. Deviations from thermal equilibrium shown by these plasma particles are often described by Kappa distributions. Although well-known, these distributions are still controversial in achieving a statistical characterization and a physical interpretation of non-equilibrium plasmas. The results of the Kappa modelling presented here mark a significant progress with respect to all these aspects and open perspectives to understanding the high-resolution data collected by the new generation of telescopes and spacecraft missions. The book is directed to the large community of plasma astrophysics, including graduate students and specialists from associated disciplines, given the palette of the proposed topics reaching from applications to the solar atmosphere and the solar wind, via linear and quasilinear modelling of multi-species plasmas and waves within, to the fundamental physics of nonequilibrium plasmas.
Publisher: Springer Nature
ISBN: 3030826236
Category : Science
Languages : en
Pages : 326
Book Description
This book presents recent results on the modelling of space plasmas with Kappa distributions and their interpretation. Hot and dilute space plasmas most often do not reach thermal equilibrium, their dynamics being essentially conditioned by the kinetic effects of plasma particles, i.e., electrons, protons, and heavier ions. Deviations from thermal equilibrium shown by these plasma particles are often described by Kappa distributions. Although well-known, these distributions are still controversial in achieving a statistical characterization and a physical interpretation of non-equilibrium plasmas. The results of the Kappa modelling presented here mark a significant progress with respect to all these aspects and open perspectives to understanding the high-resolution data collected by the new generation of telescopes and spacecraft missions. The book is directed to the large community of plasma astrophysics, including graduate students and specialists from associated disciplines, given the palette of the proposed topics reaching from applications to the solar atmosphere and the solar wind, via linear and quasilinear modelling of multi-species plasmas and waves within, to the fundamental physics of nonequilibrium plasmas.
Introduction to Statistical Physics
Author: Silvio Salinas
Publisher: Springer Science & Business Media
ISBN: 9780387951195
Category : Science
Languages : en
Pages : 400
Book Description
This textbook covers the basic principles of statistical physics and thermodynamics. The text is pitched at the level equivalent to first-year graduate studies or advanced undergraduate studies. It presents the subject in a straightforward and lively manner. After reviewing the basic probability theory of classical thermodynamics, the author addresses the standard topics of statistical physics. The text demonstrates their relevance in other scientific fields using clear and explicit examples. Later chapters introduce phase transitions, critical phenomena and non-equilibrium phenomena.
Publisher: Springer Science & Business Media
ISBN: 9780387951195
Category : Science
Languages : en
Pages : 400
Book Description
This textbook covers the basic principles of statistical physics and thermodynamics. The text is pitched at the level equivalent to first-year graduate studies or advanced undergraduate studies. It presents the subject in a straightforward and lively manner. After reviewing the basic probability theory of classical thermodynamics, the author addresses the standard topics of statistical physics. The text demonstrates their relevance in other scientific fields using clear and explicit examples. Later chapters introduce phase transitions, critical phenomena and non-equilibrium phenomena.
Random Fields for Spatial Data Modeling
Author: Dionissios T. Hristopulos
Publisher: Springer Nature
ISBN: 9402419187
Category : Science
Languages : en
Pages : 884
Book Description
This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.
Publisher: Springer Nature
ISBN: 9402419187
Category : Science
Languages : en
Pages : 884
Book Description
This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional integral representations, perturbation and variational methods). The book also explores links between random fields, Gaussian processes and neural networks used in machine learning. Connections with applied mathematics are highlighted by means of models based on stochastic partial differential equations. An interlude on autoregressive time series provides useful lower-dimensional analogies and a connection with the classical linear harmonic oscillator. Other chapters focus on non-Gaussian random fields and stochastic simulation methods. The book also presents results based on the author’s research on Spartan random fields that were inspired by statistical field theories originating in physics. The equivalence of the one-dimensional Spartan random field model with the classical, linear, damped harmonic oscillator driven by white noise is highlighted. Ideas with potentially significant computational gains for the processing of big spatial data are presented and discussed. The final chapter concludes with a description of the Karhunen-Loève expansion of the Spartan model. The book will appeal to engineers, physicists, and geoscientists whose research involves spatial models or spatial data analysis. Anyone with background in probability and statistics can read at least parts of the book. Some chapters will be easier to understand by readers familiar with differential equations and Fourier transforms.
An Introduction to Statistical Modeling of Extreme Values
Author: Stuart Coles
Publisher: Springer Science & Business Media
ISBN: 1447136756
Category : Mathematics
Languages : en
Pages : 219
Book Description
Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.
Publisher: Springer Science & Business Media
ISBN: 1447136756
Category : Mathematics
Languages : en
Pages : 219
Book Description
Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.
From Microphysics to Macrophysics
Author: Roger Balian
Publisher: Springer Science & Business Media
ISBN: 3540454802
Category : Science
Languages : en
Pages : 626
Book Description
This popular, often cited text returns in a softcover edition to provide a thorough introduction to statistical physics and thermodynamics, and to exhibit the universal chain of ideas leading from the laws of microphysics to the macroscopic behaviour of matter. A wide range of applications illustrates the concepts, and many exercises reinforce understanding. Volume II applies statistical methods to systems governed by quantum effects, in particular to solid state physics, explaining properties due to the crystal structure or to the lattice excitations or to the electrons. The last chapters are devoted to non-equilibrium processes and to kinetic equations, with many applications included.
Publisher: Springer Science & Business Media
ISBN: 3540454802
Category : Science
Languages : en
Pages : 626
Book Description
This popular, often cited text returns in a softcover edition to provide a thorough introduction to statistical physics and thermodynamics, and to exhibit the universal chain of ideas leading from the laws of microphysics to the macroscopic behaviour of matter. A wide range of applications illustrates the concepts, and many exercises reinforce understanding. Volume II applies statistical methods to systems governed by quantum effects, in particular to solid state physics, explaining properties due to the crystal structure or to the lattice excitations or to the electrons. The last chapters are devoted to non-equilibrium processes and to kinetic equations, with many applications included.
43 Visions For Complexity
Author: Stefan Thurner
Publisher: World Scientific
ISBN: 9813206861
Category : Science
Languages : en
Pages : 93
Book Description
Coping with the complexities of the social world in the 21st century requires deeper quantitative and predictive understanding. Forty-three internationally acclaimed scientists and thinkers share their vision for complexity science in the next decade in this invaluable book. Topics cover how complexity and big data science could help society to tackle the great challenges ahead, and how the newly established Complexity Science Hub Vienna might be a facilitator on this path.Published in collaboration with Institute Para Limes.
Publisher: World Scientific
ISBN: 9813206861
Category : Science
Languages : en
Pages : 93
Book Description
Coping with the complexities of the social world in the 21st century requires deeper quantitative and predictive understanding. Forty-three internationally acclaimed scientists and thinkers share their vision for complexity science in the next decade in this invaluable book. Topics cover how complexity and big data science could help society to tackle the great challenges ahead, and how the newly established Complexity Science Hub Vienna might be a facilitator on this path.Published in collaboration with Institute Para Limes.