Nonequilibrium Effects for Hypersonic Transitional Flows Using Continuum Approach

Nonequilibrium Effects for Hypersonic Transitional Flows Using Continuum Approach PDF Author: Tahir Geok?cen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Nonequilibrium Effects for Hypersonic Transitional Flows Using Continuum Approach

Nonequilibrium Effects for Hypersonic Transitional Flows Using Continuum Approach PDF Author: Tahir Geok?cen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Nonequilibrium Effects for Hypersonic Transitional Flows

Nonequilibrium Effects for Hypersonic Transitional Flows PDF Author: James N. Moss
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Get Book Here

Book Description


A Hybrid Particle/continuum Approach for Nonequilibrium Hypersonic Flows

A Hybrid Particle/continuum Approach for Nonequilibrium Hypersonic Flows PDF Author: Wen-Lan Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 406

Get Book Here

Book Description


Hypersonic Nonequilibrium Flow Simulations Over a Blunt Body Using Bgk Simulations

Hypersonic Nonequilibrium Flow Simulations Over a Blunt Body Using Bgk Simulations PDF Author: Sunny Jain
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
There has been a continuous effort to unveil the physics of hypersonic flows both experimentally and numerically, in order to achieve an efficient hypersonic vehicle design. With the advent of the high speed computers, a lot of focus has been given on research pertaining to numerical approach to understand this physics. The features of such flows are quite different from those of subsonic, transonic and supersonic ones and thus normal CFD methodologies fail to capture the high speed flows efficiently. Such calculations are made even more challenging by the presence of nonequilibrium thermodynamic and chemical effects. Thus further research in the field of nonequilibrium thermodynamics is required for the accurate prediction of such high enthalpy flows. The objective of this thesis is to develop improved computational tools for hypersonic aerodynamics accounting for non-equilibrium effects. A survey of the fundamental theory and mathematical modeling pertaining to modeling high temperature flow physics is presented. The computational approaches and numerical methods pertaining to high speed flows are discussed. In the first part of this work, the fundamental theory and mathematical modeling pertaining to modeling high temperature flow physics is presented. Continuum based approach (Navier Stokes) and Boltzmann equation based approach (Gas Kinetic) are discussed. It is shown mathematically that unlike the most popular continuum based methods, Gas Kinetic method presented in this work satisfies the entropy condition. In the second part of this work, the computational approaches and numerical methods pertaining to high speed flows is discussed. In the continuum methods, the Steger Warming schemes and Roe's scheme are discussed. The kinetic approach discussed is the Boltzmann equation with Bhatnagar Gross Krook (BGK) collision operator. In the third part, the results from new computational fluid dynamics code developed are presented. A range of validation and verification test cases are presented. A comparison of the two common reconstruction techniques: Green Gauss gradient method and MUSCL scheme are discussed. Two of the most common failings of continuum based methods: excessive numerical dissipation and carbuncle phenomenon techniques, are investigated. It is found that for the blunt body problem, Boltzmann BGK method is free of these failings.

Quantifying Non-equilibrium in Hypersonic Flows Using Entropy Generation

Quantifying Non-equilibrium in Hypersonic Flows Using Entropy Generation PDF Author: Ryan W. Carr
Publisher:
ISBN:
Category : Aerodynamics, Hypersonic
Languages : en
Pages : 224

Get Book Here

Book Description


The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)

The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) PDF Author: Xinguo Zhang
Publisher: Springer
ISBN: 981133305X
Category : Technology & Engineering
Languages : en
Pages : 3068

Get Book Here

Book Description
This book is a compilation of peer-reviewed papers from the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). The symposium is a common endeavour between the four national aerospace societies in China, Australia, Korea and Japan, namely, the Chinese Society of Aeronautics and Astronautics (CSAA), Royal Aeronautical Society Australian Division (RAeS Australian Division), the Korean Society for Aeronautical and Space Sciences (KSAS) and the Japan Society for Aeronautical and Space Sciences (JSASS). APISAT is an annual event initiated in 2009 to provide an opportunity for researchers and engineers from Asia-Pacific countries to discuss current and future advanced topics in aeronautical and space engineering.

Frontiers of Computational Fluid Dynamics 2002

Frontiers of Computational Fluid Dynamics 2002 PDF Author: Robert William MacCormack
Publisher: World Scientific
ISBN: 9789812810793
Category : Technology & Engineering
Languages : en
Pages : 528

Get Book Here

Book Description
This series of volumes on the OC Frontiers of Computational Fluid DynamicsOCO was introduced to honor contributors who have made a major impact on the field. The first volume was published in 1994 and was dedicated to Prof Antony Jameson; the second was published in 1998 and was dedicated to Prof Earl Murman. The volume is dedicated to Prof Robert MacCormack. The twenty-six chapters in the current volume have been written by leading researchers from academia, government laboratories, and industry. They present up-to-date descriptions of recent developments in techniques for numerical analysis of fluid flow problems, and applications of these techniques to important problems in industry, as well as the classic paper that introduced the OC MacCormack schemeOCO to the world. Contents: The Effect of Viscosity in Hypervelocity Impact Cratering (R W MacCormack); The MacCormack Method OCo Historical Perspective (C M Hung et al.); Numerical Solutions of Cauchy-Riemann Equations for Two and Three Dimensional Flows (M M Hafez & J Houseman); Extension of Efficient Low Dissipation High Order Schemes for 3-D Curvilinear Moving Grids (M Vinokur & H C Yee); Scalable Parallel Implicit Multigrid Solution of Unsteady Incompressible Flows (R Pankajakshan et al.); Lattice Boltzmann Simulation of Incompressible Flows (N Satofuka & M Ishikura); Numerical Simulation of MHD Effects on Hypersonic Flow of a Weakly Ionized Gas in an Inlet (R K Agarwal & P Deb); Development of 3D DRAGON Grid Method for Complex Geometry (M-S Liou & Y Zheng); Advances in Algorithms for Computing Aerodynamic Flows (D W Zingg et al.); Selected CFD Capabilities at DLR (W Kordulla); CFD Applications to Space Transportation Systems (K Fujii); Information Science OCo A New Frontier of CFD (K Oshima & Y Oshima); Integration of CFD into Aerodynamics Education (E M Murman & A Rizzi); and other papers. Readership: Researchers and graduate students in numerical and computational mathematics."

Computing Methods in Applied Sciences and Engineering

Computing Methods in Applied Sciences and Engineering PDF Author: R. Glowinski
Publisher: SIAM
ISBN: 9780898712643
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
"Proceedings of the Ninth International Conference on Computing Methods in Applied Sciences and Engineering, Paris, France, January 29-February 2, 1990"--T.p. verso.

Quantifying Non-Equilibrium in Hypersonic Flows Using Entropy Generation

Quantifying Non-Equilibrium in Hypersonic Flows Using Entropy Generation PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 99

Get Book Here

Book Description
The constitutive relations traditionally used for finding shear stress and heat flux in a fluid become invalid in non-equilibrium flow. Their derivation from kinetic theory only demonstrates they are valid only for small deviations from equilibrium. Because it is fundamentally linked to non-equilibrium, entropy generation is used to investigate the limits of the continuum constitutive relations. However, the continuum equations are inherently limited to near equilibrium conditions due to the constitutive relations; thus kinetic theory must be used as a basis for comparison. Direct Simulation Monte Carlo (DSMC), a particle method alternative to continuum methods, is based on kinetic theory and is used to develop a flow solution free from equilibrium assumptions. Solutions were obtained for hypersonic flow over two axisymmetric geometries using both a continuum solver and DSMC. Formulations for entropy generation are presented for each method, and the two solutions are compared. The continuum solver fails to capture regions of non-equilibrium as evidenced by thicker shocks in the DSMC solution. To extend the useful range of the continuum constitutive relations, the Lennard-Jones model is offered as an alternative to Sutherland?s Law for calculating viscosity and thermal conductivity. The two are compared, and parameters offering a good fit for these flows are suggested for the Lennard-Jones model.

Effects of Thermochemical Nonequilibrium on Hypersonic Boundary-Layer Instability in the Presence of Surface Ablation Or Isolated Two-Dimensional Roughness

Effects of Thermochemical Nonequilibrium on Hypersonic Boundary-Layer Instability in the Presence of Surface Ablation Or Isolated Two-Dimensional Roughness PDF Author: Clifton Mortensen
Publisher:
ISBN:
Category :
Languages : en
Pages : 251

Get Book Here

Book Description
The current understanding of the effects of thermochemical nonequilibrium on hypersonic boundary-layer instability still contains uncertainties, and there has been little research into the effects of surface ablation, or two-dimensional roughness, on hypersonic boundary-layer instability. The objective of this work is to study the effects of thermochemical nonequilibrium on hypersonic boundary-layer instability. More specifically, two separate nonequilibrium flow configurations are studied: 1) flows with graphite surface ablation, and 2) flows with isolated two-dimensional surface roughness. These two flow types are studied numerically and theoretically, using direct numerical simulation and linear stability theory, respectively. To study surface ablation, a new high-order shock-fitting method with thermochemical nonequilibrium and finite-rate chemistry boundary conditions for graphite ablation is developed and validated. The method is suitable for direct numerical simulation of boundary-layer transition in a hypersonic real-gas flow with graphite ablation. The new method is validated by comparison with three computational data sets and one set of experimental data. Also, a thermochemical nonequilibrium linear stability theory solver with a gas phase model that includes multiple carbon species, as well as a linearized surface graphite ablation model, is developed and validated. It is validated with previously published linear stability analysis and direct numerical simulation results. A high-order method for discretizing the linear stability equations is used which can easily include high-order boundary conditions. The developed codes are then used to study hypersonic boundary-layer instability for a 7 deg half angle blunt cone at Mach 15.99 and the Reentry F experiment at 100~kft. Multiple simulations are run with the same geometry and freestream conditions to help separate real gas, blowing, and carbon species effects on hypersonic boundary-layer instability. For the case at Mach 15.99, a directly simulated 525~kHz second-mode wave was found to be significantly unstable for the real-gas simulation, while in the ideal-gas simulations, no significant flow instability is seen. An N factor comparison also shows that real-gas effects significantly destabilize the flow when compared to an ideal gas. Blowing is destabilizing for the real gas simulation and has a negligible effect for the ideal gas simulation due to the different locations of instability onset. Notably, carbon species resulting from ablation are shown to slightly stabilize the flow for both cases. For the Reentry F flow conditions, inclusion of the ablating nose cone was shown to increase the region of second mode growth near the nose cone. Away from the nose cone, the second mode was relatively unaffected. Experimental and numerical results have shown that two-dimensional surface roughness can stabilize a hypersonic boundary layer dominated by second-mode instability. It is sought to understand how this physical phenomenon extends from an airflow under a perfect gas assumption to that of a flow in thermochemical nonequilibrium. To these ends, a new high-order shock-fitting method that includes thermochemical nonequilibrium and a cut-cell method, to handle complex geometries unsuitable for structured body-fitted grids, is presented. The new method is designed specifically for direct numerical simulation of hypersonic boundary-layer transition in a hypersonic real-gas flow with arbitrary shaped surface roughness. The new method is validated and shown to perform comparably to a high-order method with a body-fitted grid. For a Mach 10 flow over a flat plate, a two-dimensional roughness element was found to stabilize the second mode when placed downstream of the synchronization location. This result is consistent with previous results for perfect-gas flows. For a Mach 15 flow over a flat plate, a two-dimensional surface roughness element stabilizes the second-mode instability more effectively in a thermochemical nonequilibrium flow, than in a corresponding perfect gas flow.