Author: Robert E. Green
Publisher: Springer Science & Business Media
ISBN: 1461525748
Category : Technology & Engineering
Languages : en
Pages : 822
Book Description
Traditionally the vast majority of materials characterization techniques have been destructive, e. g. , chemical compositional analysis, metallographic determination of microstructure, tensile test measurement of mechanical properties, etc. Also, traditionally, nondestructive techniques have been used almost exclusively for the detection of macroscopic defects, mostly cracks, in structures and devices which have already been constructed and have already been in service for an extended period of time. Following these conventional nondestructive tests, it has been common practice to use somewhat arbitrary accept-reject criteria to decide whether or not the structure or device should be removed from service. The present unfavorable status of a large segment of industry, coupled with the desire to keep structures in service well past their original design life, dramatically show that our traditional approaches must be drastically modified if we are to be able to meet future needs. The role of nondestructive characterization of materials is changing and will continue to change dramatically. It has become increasingly evident that it is both practical and cost effective to expand the role of nondestructive evaluation to include all aspects of materials' production and application and to introduce it much earlier in the manufacturing cycle. In fact, the recovery of a large portion of industry from severe economic problems is dependent, in part, on the successful implementation of this expanded role.
Nondestructive Characterization of Materials VI
Author: Robert E. Green
Publisher: Springer Science & Business Media
ISBN: 1461525748
Category : Technology & Engineering
Languages : en
Pages : 822
Book Description
Traditionally the vast majority of materials characterization techniques have been destructive, e. g. , chemical compositional analysis, metallographic determination of microstructure, tensile test measurement of mechanical properties, etc. Also, traditionally, nondestructive techniques have been used almost exclusively for the detection of macroscopic defects, mostly cracks, in structures and devices which have already been constructed and have already been in service for an extended period of time. Following these conventional nondestructive tests, it has been common practice to use somewhat arbitrary accept-reject criteria to decide whether or not the structure or device should be removed from service. The present unfavorable status of a large segment of industry, coupled with the desire to keep structures in service well past their original design life, dramatically show that our traditional approaches must be drastically modified if we are to be able to meet future needs. The role of nondestructive characterization of materials is changing and will continue to change dramatically. It has become increasingly evident that it is both practical and cost effective to expand the role of nondestructive evaluation to include all aspects of materials' production and application and to introduce it much earlier in the manufacturing cycle. In fact, the recovery of a large portion of industry from severe economic problems is dependent, in part, on the successful implementation of this expanded role.
Publisher: Springer Science & Business Media
ISBN: 1461525748
Category : Technology & Engineering
Languages : en
Pages : 822
Book Description
Traditionally the vast majority of materials characterization techniques have been destructive, e. g. , chemical compositional analysis, metallographic determination of microstructure, tensile test measurement of mechanical properties, etc. Also, traditionally, nondestructive techniques have been used almost exclusively for the detection of macroscopic defects, mostly cracks, in structures and devices which have already been constructed and have already been in service for an extended period of time. Following these conventional nondestructive tests, it has been common practice to use somewhat arbitrary accept-reject criteria to decide whether or not the structure or device should be removed from service. The present unfavorable status of a large segment of industry, coupled with the desire to keep structures in service well past their original design life, dramatically show that our traditional approaches must be drastically modified if we are to be able to meet future needs. The role of nondestructive characterization of materials is changing and will continue to change dramatically. It has become increasingly evident that it is both practical and cost effective to expand the role of nondestructive evaluation to include all aspects of materials' production and application and to introduce it much earlier in the manufacturing cycle. In fact, the recovery of a large portion of industry from severe economic problems is dependent, in part, on the successful implementation of this expanded role.
Nondestructive Characterization of Materials XI
Author: Robert E. Green
Publisher: Springer Nature
ISBN: 3642558593
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
The papers published in these proceedings represent the latest developments in the nondestructive characterization of materials and were presented at the Eleventh International Symposium on Nondestructive Characterization of Materials held in June 2002, in Berlin, Germany.
Publisher: Springer Nature
ISBN: 3642558593
Category : Technology & Engineering
Languages : en
Pages : 792
Book Description
The papers published in these proceedings represent the latest developments in the nondestructive characterization of materials and were presented at the Eleventh International Symposium on Nondestructive Characterization of Materials held in June 2002, in Berlin, Germany.
Nondestructive Characterization of Materials X
Author: R.E. Green
Publisher: Elsevier
ISBN: 0080552102
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
The papers published in these peer-reviewed proceedings represent the latest developments in nondestructive characterization of materials and were presented at the Tenth International Symposium on Nondestructive Characterization of Materials held on June 26 - 30, 2000 in Karuizawa, Japan. The symposium was held concurrently with three other symposia and one workshop. This symposium is the tenth in the series that began in 1983 and became an international meeting in 1986.The symposium started with a Plenary Lecture entitled 'Application of Non-contact Ultrasonics to Nondestrctive Characterization of Materials' by Professor R.E. Green, Jr. Various characterization methods were presented at the symposium, including ultrasonics, X-ray, eddy currents, laser, thermal wave, acoustic emission, optical fibers, optics, magnetics and ultrasonic microscope. Thin films and coatings as well as smart materials were also emphasized in this symposium.
Publisher: Elsevier
ISBN: 0080552102
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
The papers published in these peer-reviewed proceedings represent the latest developments in nondestructive characterization of materials and were presented at the Tenth International Symposium on Nondestructive Characterization of Materials held on June 26 - 30, 2000 in Karuizawa, Japan. The symposium was held concurrently with three other symposia and one workshop. This symposium is the tenth in the series that began in 1983 and became an international meeting in 1986.The symposium started with a Plenary Lecture entitled 'Application of Non-contact Ultrasonics to Nondestrctive Characterization of Materials' by Professor R.E. Green, Jr. Various characterization methods were presented at the symposium, including ultrasonics, X-ray, eddy currents, laser, thermal wave, acoustic emission, optical fibers, optics, magnetics and ultrasonic microscope. Thin films and coatings as well as smart materials were also emphasized in this symposium.
Nondestructive Characterization of Materials VIII
Author: Robert E. Green
Publisher: Springer Science & Business Media
ISBN: 1461548470
Category : Technology & Engineering
Languages : en
Pages : 828
Book Description
Different physical models for the Snoek-type relaxation in ternary systems (Fe-C-Me) are analyzed from the viewpoint of a distance of interatomic interaction taken into account: For non-saturated from the viewpoint of overlapping of interatomic interaction in b.c.c. alloys the physically sufficient and optimal for the computer simulation is the short-range model, which takes into account the interatomic interaction and the average amount of substitutional atoms in the first coordination shell, only. For high alloyed b.c.c. systems (i.e. with the overlapped interatomic interaction) the carbon atom undergoes an interaction of a few substitutional atoms simultaneously. That leads to the appearance of one broadened Snoek peak. Activation energy of such a peak is summed from the "elastic" and "chemical" interatomic interactions. Experimental results for alloys with b.c.c. solid solution structure and its computer simulations allow to introduce the new criterion for the high alloy state of monophase steels: the high alloyed state corresponds to the situation when substitutional atoms can not be considered any longer as the isolated atoms. From the viewpoint of mechanical spectroscopy this situation corresponds to the appearance of one broadened IF Snoek-type peak instead of two peaks existed for the steels with lower substitutional atom concentration.
Publisher: Springer Science & Business Media
ISBN: 1461548470
Category : Technology & Engineering
Languages : en
Pages : 828
Book Description
Different physical models for the Snoek-type relaxation in ternary systems (Fe-C-Me) are analyzed from the viewpoint of a distance of interatomic interaction taken into account: For non-saturated from the viewpoint of overlapping of interatomic interaction in b.c.c. alloys the physically sufficient and optimal for the computer simulation is the short-range model, which takes into account the interatomic interaction and the average amount of substitutional atoms in the first coordination shell, only. For high alloyed b.c.c. systems (i.e. with the overlapped interatomic interaction) the carbon atom undergoes an interaction of a few substitutional atoms simultaneously. That leads to the appearance of one broadened Snoek peak. Activation energy of such a peak is summed from the "elastic" and "chemical" interatomic interactions. Experimental results for alloys with b.c.c. solid solution structure and its computer simulations allow to introduce the new criterion for the high alloy state of monophase steels: the high alloyed state corresponds to the situation when substitutional atoms can not be considered any longer as the isolated atoms. From the viewpoint of mechanical spectroscopy this situation corresponds to the appearance of one broadened IF Snoek-type peak instead of two peaks existed for the steels with lower substitutional atom concentration.
Nondestructive Characterization of Materials IV
Author: J.F. Bussière
Publisher: Springer Science & Business Media
ISBN: 1489906703
Category : Technology & Engineering
Languages : en
Pages : 506
Book Description
There is a great deal of interest in extending nondestructive technologies beyond the location and identification of cracks and voids. Specifically there is growing interest in the application of nondestructive evaluation (NOEl to the measurement of physical and mechanical properties of materials. The measurement of materials properties is often referred to as materials characterization; thus nondestructive techniques applied to characterization become nondestructive characterization (NDCl. There are a number of meetings, proceedings and journals focused upon nondestructive technologies and the detection and identification of cracks and voids. However, the series of symposia, of which these proceedings represent the fourth, are the only meetings uniquely focused upon nondestructive characterization. Moreover, these symposia are especially concerned with stimulating communication between the materials, mechanical and manufacturing engineer and the NDE technology oriented engineer and scientist. These symposia recognize that it is the welding of these areas of expertise that is necessary for practical development and application of NDC technology to measurements of components for in service life time and sensor technology for intelligent processing of materials. These proceedings are from the fourth international symposia and are edited by c.o. Ruud, J. F. Bussiere and R.E. Green, Jr. . The dates, places, etc of the symposia held to date area as follows: Symposia on Nondestructive Methods for TITLE: Material Property Determination DATES: April 6-8, 1983 PLACE: Hershey, PA, USA CHAIRPERSONS: C.O. Ruud and R.E. Green, Jr.
Publisher: Springer Science & Business Media
ISBN: 1489906703
Category : Technology & Engineering
Languages : en
Pages : 506
Book Description
There is a great deal of interest in extending nondestructive technologies beyond the location and identification of cracks and voids. Specifically there is growing interest in the application of nondestructive evaluation (NOEl to the measurement of physical and mechanical properties of materials. The measurement of materials properties is often referred to as materials characterization; thus nondestructive techniques applied to characterization become nondestructive characterization (NDCl. There are a number of meetings, proceedings and journals focused upon nondestructive technologies and the detection and identification of cracks and voids. However, the series of symposia, of which these proceedings represent the fourth, are the only meetings uniquely focused upon nondestructive characterization. Moreover, these symposia are especially concerned with stimulating communication between the materials, mechanical and manufacturing engineer and the NDE technology oriented engineer and scientist. These symposia recognize that it is the welding of these areas of expertise that is necessary for practical development and application of NDC technology to measurements of components for in service life time and sensor technology for intelligent processing of materials. These proceedings are from the fourth international symposia and are edited by c.o. Ruud, J. F. Bussiere and R.E. Green, Jr. . The dates, places, etc of the symposia held to date area as follows: Symposia on Nondestructive Methods for TITLE: Material Property Determination DATES: April 6-8, 1983 PLACE: Hershey, PA, USA CHAIRPERSONS: C.O. Ruud and R.E. Green, Jr.
Nondestructive Characterization of Materials
Author: Paul Höller
Publisher: Springer Science & Business Media
ISBN: 3642840035
Category : Technology & Engineering
Languages : en
Pages : 894
Book Description
Engineering structures for reliable function and safety have to be designed such that operational mechanical loads are compensated for by stresses in the components bearable by the materials used. Vhat is "bearable"? First of all it depends on the properties of the chosen materials as well as on several other parameters, e.g. temperature, corrosivity of the environment, elapsed or remaining serviceable life, unexpected deterioration of materials, whatever the source and nature of such deterioration may be: defects, loss of strength, embrittlement, wastage, etc. DEFECTS and PROPERTIES of materials currently determine loadability. Therefore in addition to nondestructive testing for defects there is also a need for nondestructive testing of properties. The third type of information to be supplied by nondestructive measurement pertains to STRESS STATES under OPERATIONAL LOADS, i.e. LOAD-INDUCED plus RESIDUAL STRESSES. Residual stresses normally cannot be calculated; they have to be measured nondestructively; well-approved elastomechanical finite element codes are available and used for calculating load-induced stresses; for redundancy and reliability, engineers, however, need procedures and instrumentation for experimental checks.
Publisher: Springer Science & Business Media
ISBN: 3642840035
Category : Technology & Engineering
Languages : en
Pages : 894
Book Description
Engineering structures for reliable function and safety have to be designed such that operational mechanical loads are compensated for by stresses in the components bearable by the materials used. Vhat is "bearable"? First of all it depends on the properties of the chosen materials as well as on several other parameters, e.g. temperature, corrosivity of the environment, elapsed or remaining serviceable life, unexpected deterioration of materials, whatever the source and nature of such deterioration may be: defects, loss of strength, embrittlement, wastage, etc. DEFECTS and PROPERTIES of materials currently determine loadability. Therefore in addition to nondestructive testing for defects there is also a need for nondestructive testing of properties. The third type of information to be supplied by nondestructive measurement pertains to STRESS STATES under OPERATIONAL LOADS, i.e. LOAD-INDUCED plus RESIDUAL STRESSES. Residual stresses normally cannot be calculated; they have to be measured nondestructively; well-approved elastomechanical finite element codes are available and used for calculating load-induced stresses; for redundancy and reliability, engineers, however, need procedures and instrumentation for experimental checks.
Fundamentals of Ultrasonic Nondestructive Evaluation
Author: Lester W. Schmerr Jr.
Publisher: Springer Science & Business Media
ISBN: 1489901426
Category : Technology & Engineering
Languages : en
Pages : 563
Book Description
Ultrasound is currently used in a wide spectrum of applications ranging from medical imaging to metal cutting. This book is about using ultrasound in nondestructive evaluation (NDE) inspections. Ultrasonic NDE uses high-frequency acoustic/elastic waves to evaluate components without affecting their integrity or performance. This technique is commonly used in industry (particularly in aerospace and nuclear power) to inspect safety-critical parts for flaws during in-service use. Other important uses of ultrasonic NDE involve process control functions during manufacturing and fundamental materials characterization studies. It is not difficult to set up an ultrasonic NDE measurement system to launch waves into a component and monitor the waves received from defects, such as cracks, even when those defects are deep within the component. It is difficult however to interpret quantitatively the signals received in such an ultrasonic NDE measurement process. For example based on the ultrasonic signal received from a crack, what is the size, shape, and orientation of the crack producing the signal? Answering such questions requires evaluation procedures based on a detailed knowledge of the physics of the entire ultrasonic measurement process. One approach to obtaining such knowledge is to couple quantitative experiments closely with detailed models of the entire ultrasonic measurement system itself. We refer to such models here as ultrasonic NDE measurement models. In other areas of engineering, models have revolutionized how engineering is practiced. A classic example is the impact of the finite-element method on elastic stress analysis.
Publisher: Springer Science & Business Media
ISBN: 1489901426
Category : Technology & Engineering
Languages : en
Pages : 563
Book Description
Ultrasound is currently used in a wide spectrum of applications ranging from medical imaging to metal cutting. This book is about using ultrasound in nondestructive evaluation (NDE) inspections. Ultrasonic NDE uses high-frequency acoustic/elastic waves to evaluate components without affecting their integrity or performance. This technique is commonly used in industry (particularly in aerospace and nuclear power) to inspect safety-critical parts for flaws during in-service use. Other important uses of ultrasonic NDE involve process control functions during manufacturing and fundamental materials characterization studies. It is not difficult to set up an ultrasonic NDE measurement system to launch waves into a component and monitor the waves received from defects, such as cracks, even when those defects are deep within the component. It is difficult however to interpret quantitatively the signals received in such an ultrasonic NDE measurement process. For example based on the ultrasonic signal received from a crack, what is the size, shape, and orientation of the crack producing the signal? Answering such questions requires evaluation procedures based on a detailed knowledge of the physics of the entire ultrasonic measurement process. One approach to obtaining such knowledge is to couple quantitative experiments closely with detailed models of the entire ultrasonic measurement system itself. We refer to such models here as ultrasonic NDE measurement models. In other areas of engineering, models have revolutionized how engineering is practiced. A classic example is the impact of the finite-element method on elastic stress analysis.
Review of Progress in Quantitative Nondestructive Evaluation
Author: Donald O. Thompson
Publisher: Springer Science & Business Media
ISBN: 1461553393
Category : Technology & Engineering
Languages : en
Pages : 2093
Book Description
These Proceedings, consisting of Parts A and B, contain the edited versions of most of the papers presented at the annual Review of Progress in Quantitative Nondestructive Evaluation held at University of San Diego, San Diego, CA, on July 27 to August 1, 1997. The Review was organized by the Center for NDE at Iowa State University, in cooperation with the Ames Laboratory of the USDOE, the American Society of Nondestructive Testing, the National Institute of Standards and Technology, the Federal Aviation Administration, and the National Science Foundation IndustrylUniversity Cooperative Research Centers. This year's Review of Progress in QNDE was attended by approximately 370 participants from the US and many foreign countries who presented a total of approximately 350 papers. As usual, the meeting was divided into 36 sessions with four sessions running concurrently. The Review covered all phases of NDE research and development from fundamental investigations to engineering applications and inspection systems, and methods of inspection science from acoustics to x-rays. The Review continues to experience some fluctuations in size, mostly under pressure from a decrease in funding for NDE research at the US Federal level, but increased participation from foreign laboratories has more than made up the difference. The Review is ideally sized to permit a full-scale overview of the latest developments in a collegial atmosphere that most participants favor. The opening plenary session this year concentrated on advances in imaging technologies and methodologies that have been made in recent years. Dr. K.
Publisher: Springer Science & Business Media
ISBN: 1461553393
Category : Technology & Engineering
Languages : en
Pages : 2093
Book Description
These Proceedings, consisting of Parts A and B, contain the edited versions of most of the papers presented at the annual Review of Progress in Quantitative Nondestructive Evaluation held at University of San Diego, San Diego, CA, on July 27 to August 1, 1997. The Review was organized by the Center for NDE at Iowa State University, in cooperation with the Ames Laboratory of the USDOE, the American Society of Nondestructive Testing, the National Institute of Standards and Technology, the Federal Aviation Administration, and the National Science Foundation IndustrylUniversity Cooperative Research Centers. This year's Review of Progress in QNDE was attended by approximately 370 participants from the US and many foreign countries who presented a total of approximately 350 papers. As usual, the meeting was divided into 36 sessions with four sessions running concurrently. The Review covered all phases of NDE research and development from fundamental investigations to engineering applications and inspection systems, and methods of inspection science from acoustics to x-rays. The Review continues to experience some fluctuations in size, mostly under pressure from a decrease in funding for NDE research at the US Federal level, but increased participation from foreign laboratories has more than made up the difference. The Review is ideally sized to permit a full-scale overview of the latest developments in a collegial atmosphere that most participants favor. The opening plenary session this year concentrated on advances in imaging technologies and methodologies that have been made in recent years. Dr. K.
New Perspectives on Problems in Classical and Quantum Physics: Acoustic propagation and scattering, electronic scattering
Author: Pier Paolo Delsanto
Publisher: Taylor & Francis US
ISBN: 9789056995492
Category : Mathematical physics
Languages : en
Pages : 456
Book Description
Publisher: Taylor & Francis US
ISBN: 9789056995492
Category : Mathematical physics
Languages : en
Pages : 456
Book Description
An Assessment of the SBIR Program at the National Institutes of Health
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309109515
Category : Medical
Languages : en
Pages : 456
Book Description
The SBIR program allocates 2.5 percent of 11 federal agencies' extramural R&D budgets to fund R&D projects by small businesses, providing approximately $2 billion annually in competitive awards. At the request of Congress the National Academies conducted a comprehensive study of how the SBIR program has stimulated technological innovation and used small businesses to meet federal research and development needs. Drawing substantially on new data collection, this book examines the SBIR program at the National Institutes of Health and makes recommendations for improvements. Separate reports will assess the SBIR program at DOD, NSF, DOE, and NASA, respectively, along with a comprehensive report on the entire program.
Publisher: National Academies Press
ISBN: 0309109515
Category : Medical
Languages : en
Pages : 456
Book Description
The SBIR program allocates 2.5 percent of 11 federal agencies' extramural R&D budgets to fund R&D projects by small businesses, providing approximately $2 billion annually in competitive awards. At the request of Congress the National Academies conducted a comprehensive study of how the SBIR program has stimulated technological innovation and used small businesses to meet federal research and development needs. Drawing substantially on new data collection, this book examines the SBIR program at the National Institutes of Health and makes recommendations for improvements. Separate reports will assess the SBIR program at DOD, NSF, DOE, and NASA, respectively, along with a comprehensive report on the entire program.