Author: Andrew Ranicki
Publisher: Cambridge University Press
ISBN: 9780521681605
Category : Mathematics
Languages : en
Pages : 332
Book Description
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.
Noncommutative Localization in Algebra and Topology
Author: Andrew Ranicki
Publisher: Cambridge University Press
ISBN: 9780521681605
Category : Mathematics
Languages : en
Pages : 332
Book Description
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.
Publisher: Cambridge University Press
ISBN: 9780521681605
Category : Mathematics
Languages : en
Pages : 332
Book Description
Noncommutative localization is a powerful algebraic technique for constructing new rings by inverting elements, matrices and more generally morphisms of modules. Originally conceived by algebraists (notably P. M. Cohn), it is now an important tool not only in pure algebra but also in the topology of non-simply-connected spaces, algebraic geometry and noncommutative geometry. This volume consists of 9 articles on noncommutative localization in algebra and topology by J. A. Beachy, P. M. Cohn, W. G. Dwyer, P. A. Linnell, A. Neeman, A. A. Ranicki, H. Reich, D. Sheiham and Z. Skoda. The articles include basic definitions, surveys, historical background and applications, as well as presenting new results. The book is an introduction to the subject, an account of the state of the art, and also provides many references for further material. It is suitable for graduate students and more advanced researchers in both algebra and topology.
Localization and Sheaves
Author: Jara Pascual
Publisher: CRC Press
ISBN: 9780582273726
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book completely solves the problem of representing rings (and modules over them), which are locally noetherian over subsets of their prime spectrum by structure sheaves over this subset. In order to realise this, one has to develop the necessary localization theory as well as to study local equivalents of familiar concepts like the Artin-Rees property, Ore sets and the second layer condition. The first part of the book is introductory and self-contained, and might serve as a starting course (at graduate level) on localization theory within Grothendieck categories. The second part is more specialised and provides the basic machinery needed to effectively these structure sheaves, as well as to study their functorial behaviour. In this way, the book should be viewed as a first introduction to what should be called relative noncommutative algebraic geometry.
Publisher: CRC Press
ISBN: 9780582273726
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book completely solves the problem of representing rings (and modules over them), which are locally noetherian over subsets of their prime spectrum by structure sheaves over this subset. In order to realise this, one has to develop the necessary localization theory as well as to study local equivalents of familiar concepts like the Artin-Rees property, Ore sets and the second layer condition. The first part of the book is introductory and self-contained, and might serve as a starting course (at graduate level) on localization theory within Grothendieck categories. The second part is more specialised and provides the basic machinery needed to effectively these structure sheaves, as well as to study their functorial behaviour. In this way, the book should be viewed as a first introduction to what should be called relative noncommutative algebraic geometry.
Non-commutative Algebraic Geometry
Author: F.M.J. van Oystaeyen
Publisher: Springer
ISBN: 3540386017
Category : Mathematics
Languages : en
Pages : 408
Book Description
Publisher: Springer
ISBN: 3540386017
Category : Mathematics
Languages : en
Pages : 408
Book Description
Noncommutative Geometry
Author: Alain Connes
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364
Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364
Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Noncommutative Geometry, Quantum Fields and Motives
Author: Alain Connes
Publisher: American Mathematical Soc.
ISBN: 1470450453
Category : Mathematics
Languages : en
Pages : 810
Book Description
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Publisher: American Mathematical Soc.
ISBN: 1470450453
Category : Mathematics
Languages : en
Pages : 810
Book Description
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Noncommutative Motives
Author: Gonçalo Tabuada
Publisher: American Mathematical Soc.
ISBN: 1470423979
Category : Mathematics
Languages : en
Pages : 127
Book Description
The theory of motives began in the early 1960s when Grothendieck envisioned the existence of a "universal cohomology theory of algebraic varieties". The theory of noncommutative motives is more recent. It began in the 1980s when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) began the study of algebraic varieties via their derived categories of coherent sheaves, and continued in the 2000s when Kontsevich conjectured the existence of a "universal invariant of noncommutative algebraic varieties". This book, prefaced by Yuri I. Manin, gives a rigorous overview of some of the main advances in the theory of noncommutative motives. It is divided into three main parts. The first part, which is of independent interest, is devoted to the study of DG categories from a homotopical viewpoint. The second part, written with an emphasis on examples and applications, covers the theory of noncommutative pure motives, noncommutative standard conjectures, noncommutative motivic Galois groups, and also the relations between these notions and their commutative counterparts. The last part is devoted to the theory of noncommutative mixed motives. The rigorous formalization of this latter theory requires the language of Grothendieck derivators, which, for the reader's convenience, is revised in a brief appendix.
Publisher: American Mathematical Soc.
ISBN: 1470423979
Category : Mathematics
Languages : en
Pages : 127
Book Description
The theory of motives began in the early 1960s when Grothendieck envisioned the existence of a "universal cohomology theory of algebraic varieties". The theory of noncommutative motives is more recent. It began in the 1980s when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) began the study of algebraic varieties via their derived categories of coherent sheaves, and continued in the 2000s when Kontsevich conjectured the existence of a "universal invariant of noncommutative algebraic varieties". This book, prefaced by Yuri I. Manin, gives a rigorous overview of some of the main advances in the theory of noncommutative motives. It is divided into three main parts. The first part, which is of independent interest, is devoted to the study of DG categories from a homotopical viewpoint. The second part, written with an emphasis on examples and applications, covers the theory of noncommutative pure motives, noncommutative standard conjectures, noncommutative motivic Galois groups, and also the relations between these notions and their commutative counterparts. The last part is devoted to the theory of noncommutative mixed motives. The rigorous formalization of this latter theory requires the language of Grothendieck derivators, which, for the reader's convenience, is revised in a brief appendix.
Structure Sheaves Over a Noncommutative Ring
Author: Jonathan S. Golan
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 700
Book Description
Applications of Sheaves
Author: M. P. Fourman
Publisher: Springer
ISBN: 3540348492
Category : Mathematics
Languages : en
Pages : 798
Book Description
Publisher: Springer
ISBN: 3540348492
Category : Mathematics
Languages : en
Pages : 798
Book Description
Banach Spaces of Continuous Functions
Author: Zbigniew Semadeni
Publisher:
ISBN:
Category : Banach spaces
Languages : en
Pages : 594
Book Description
Publisher:
ISBN:
Category : Banach spaces
Languages : en
Pages : 594
Book Description
Corings and Comodules
Author: Tomasz Brzezinski
Publisher: Cambridge University Press
ISBN: 9780521539319
Category : Mathematics
Languages : en
Pages : 492
Book Description
This is the first extensive treatment of the theory of corings and their comodules. In the first part, the module-theoretic aspects of coalgebras over commutative rings are described. Corings are then defined as coalgebras over non-commutative rings. Topics covered include module-theoretic aspects of corings, such as the relation of comodules to special subcategories of the category of modules (sigma-type categories), connections between corings and extensions of rings, properties of new examples of corings associated to entwining structures, generalisations of bialgebras such as bialgebroids and weak bialgebras, and the appearance of corings in non-commutative geometry.
Publisher: Cambridge University Press
ISBN: 9780521539319
Category : Mathematics
Languages : en
Pages : 492
Book Description
This is the first extensive treatment of the theory of corings and their comodules. In the first part, the module-theoretic aspects of coalgebras over commutative rings are described. Corings are then defined as coalgebras over non-commutative rings. Topics covered include module-theoretic aspects of corings, such as the relation of comodules to special subcategories of the category of modules (sigma-type categories), connections between corings and extensions of rings, properties of new examples of corings associated to entwining structures, generalisations of bialgebras such as bialgebroids and weak bialgebras, and the appearance of corings in non-commutative geometry.