Non-Experimental Data, Hypothesis Testing, and the Likelihood Principle

Non-Experimental Data, Hypothesis Testing, and the Likelihood Principle PDF Author: Tom Engsted
Publisher:
ISBN: 9781638283249
Category : Business & Economics
Languages : en
Pages : 0

Get Book Here

Book Description
Non-Experimental Data, Hypothesis Testing, and the Likelihood Principle: A Social Science Perspective argues that frequentist hypothesis testing - the dominant statistical evaluation paradigm in empirical research - is fundamentally unsuited for analysis of the non-experimental data prevalent in economics and other social sciences. Frequentist tests comprise incompatible repeated sampling frameworks that do not obey the Likelihood Principle (LP). For probabilistic inference, methods that are guided by the LP, that do not rely on repeated sampling, and that focus on model comparison instead of testing (e.g., subjectivist Bayesian methods) are better suited for passively observed social science data and are better able to accommodate the huge model uncertainty and highly approximative nature of structural models in the social sciences. In addition to formal probabilistic inference, informal model evaluation along relevant substantive and practical dimensions should play a leading role. The authors sketch the ideas of an alternative paradigm containing these elements.

Non-Experimental Data, Hypothesis Testing, and the Likelihood Principle

Non-Experimental Data, Hypothesis Testing, and the Likelihood Principle PDF Author: Tom Engsted
Publisher:
ISBN: 9781638283249
Category : Business & Economics
Languages : en
Pages : 0

Get Book Here

Book Description
Non-Experimental Data, Hypothesis Testing, and the Likelihood Principle: A Social Science Perspective argues that frequentist hypothesis testing - the dominant statistical evaluation paradigm in empirical research - is fundamentally unsuited for analysis of the non-experimental data prevalent in economics and other social sciences. Frequentist tests comprise incompatible repeated sampling frameworks that do not obey the Likelihood Principle (LP). For probabilistic inference, methods that are guided by the LP, that do not rely on repeated sampling, and that focus on model comparison instead of testing (e.g., subjectivist Bayesian methods) are better suited for passively observed social science data and are better able to accommodate the huge model uncertainty and highly approximative nature of structural models in the social sciences. In addition to formal probabilistic inference, informal model evaluation along relevant substantive and practical dimensions should play a leading role. The authors sketch the ideas of an alternative paradigm containing these elements.

Learning Statistics with R

Learning Statistics with R PDF Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617

Get Book Here

Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com

Statistical Inference as Severe Testing

Statistical Inference as Severe Testing PDF Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Introductory Business Statistics 2e

Introductory Business Statistics 2e PDF Author: Alexander Holmes
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 1801

Get Book Here

Book Description
Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.

The Likelihood Principle

The Likelihood Principle PDF Author: James O. Berger
Publisher: IMS
ISBN: 9780940600133
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description


Reproducibility and Replicability in Science

Reproducibility and Replicability in Science PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309486165
Category : Science
Languages : en
Pages : 257

Get Book Here

Book Description
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.

Encyclopedia of Research Design

Encyclopedia of Research Design PDF Author: Neil J. Salkind
Publisher: SAGE
ISBN: 1412961270
Category : Philosophy
Languages : en
Pages : 1779

Get Book Here

Book Description
"Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases."--Publisher's description.

Understanding Statistics and Experimental Design

Understanding Statistics and Experimental Design PDF Author: Michael H. Herzog
Publisher: Springer
ISBN: 3030034992
Category : Science
Languages : en
Pages : 146

Get Book Here

Book Description
This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.

Logic of Statistical Inference

Logic of Statistical Inference PDF Author: Ian Hacking
Publisher: Cambridge University Press
ISBN: 1316571769
Category : Philosophy
Languages : en
Pages : 229

Get Book Here

Book Description
One of Ian Hacking's earliest publications, this book showcases his early ideas on the central concepts and questions surrounding statistical reasoning. He explores the basic principles of statistical reasoning and tests them, both at a philosophical level and in terms of their practical consequences for statisticians. Presented in a fresh twenty-first-century series livery, and including a specially commissioned preface written by Jan-Willem Romeijn, illuminating its enduring importance and relevance to philosophical enquiry, Hacking's influential and original work has been revived for a new generation of readers.

Statistical Methods

Statistical Methods PDF Author: Rudolf J. Freund
Publisher: Elsevier
ISBN: 0080498221
Category : Mathematics
Languages : en
Pages : 694

Get Book Here

Book Description
This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters