Non-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot-Caratheodory Spaces

Non-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot-Caratheodory Spaces PDF Author: Donatella Danielli
Publisher: American Mathematical Soc.
ISBN: 082183911X
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
The object of the present study is to characterize the traces of the Sobolev functions in a sub-Riemannian, or Carnot-Caratheodory space. Such traces are defined in terms of suitable Besov spaces with respect to a measure which is concentrated on a lower dimensional manifold, and which satisfies an Ahlfors type condition with respect to the standard Lebesgue measure. We also study the extension problem for the relevant Besov spaces. Various concrete applications to the setting of Carnot groups are analyzed in detail and an application to the solvability of the subelliptic Neumann problem is presented.

Non-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot-Caratheodory Spaces

Non-Doubling Ahlfors Measures, Perimeter Measures, and the Characterization of the Trace Spaces of Sobolev Functions in Carnot-Caratheodory Spaces PDF Author: Donatella Danielli
Publisher: American Mathematical Soc.
ISBN: 082183911X
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
The object of the present study is to characterize the traces of the Sobolev functions in a sub-Riemannian, or Carnot-Caratheodory space. Such traces are defined in terms of suitable Besov spaces with respect to a measure which is concentrated on a lower dimensional manifold, and which satisfies an Ahlfors type condition with respect to the standard Lebesgue measure. We also study the extension problem for the relevant Besov spaces. Various concrete applications to the setting of Carnot groups are analyzed in detail and an application to the solvability of the subelliptic Neumann problem is presented.

Nonlinear Potential Theory on Metric Spaces

Nonlinear Potential Theory on Metric Spaces PDF Author: Anders Björn
Publisher: European Mathematical Society
ISBN: 9783037190999
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for interested readers and as a reference text for active researchers. The presentation is rather self contained, but it is assumed that readers know measure theory and functional analysis. The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces, and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space. Each chapter contains historical notes with relevant references, and an extensive index is provided at the end of the book.

Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls

Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls PDF Author: Nicola Arcozzi
Publisher: American Mathematical Soc.
ISBN: 0821839179
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
Contents: A tree structure for the unit ball $mathbb B? n$ in $mathbb C'n$; Carleson measures; Pointwise multipliers; Interpolating sequences; An almost invariant holomorphic derivative; Besov spaces on trees; Holomorphic Besov spaces on Bergman trees; Completing the multiplier interpolation loop; Appendix; Bibliography

Conformal Graph Directed Markov Systems on Carnot Groups

Conformal Graph Directed Markov Systems on Carnot Groups PDF Author: Vasileios Chousionis
Publisher: American Mathematical Soc.
ISBN: 1470442159
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemannian metric. In particular, they develop the thermodynamic formalism and show that, under natural hypotheses, the limit set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen's parameter. They illustrate their results for a variety of examples of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the non-real classical rank one hyperbolic spaces.

Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces

Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces PDF Author: Pascal Auscher
Publisher: American Mathematical Soc.
ISBN: 0821833839
Category : Mathematics
Languages : en
Pages : 434

Get Book Here

Book Description
This volume contains the expanded lecture notes of courses taught at the Emile Borel Centre of the Henri Poincare Institute (Paris). In the book, leading experts introduce recent research in their fields. The unifying theme is the study of heat kernels in various situations using related geometric and analytic tools. Topics include analysis of complex-coefficient elliptic operators, diffusions on fractals and on infinite-dimensional groups, heat kernel and isoperimetry on Riemannian manifolds, heat kernels and infinite dimensional analysis, diffusions and Sobolev-type spaces on metric spaces, quasi-regular mappings and $p$-Laplace operators, heat kernel and spherical inversion on $SL 2(C)$, random walks and spectral geometry on crystal lattices, isoperimetric and isocapacitary inequalities, and generating function techniques for random walks on graphs. This volume is suitable for graduate students and research mathematicians interested in random processes and analysis on manifolds.

Weil-Petersson Metric on the Universal Teichmuller Space

Weil-Petersson Metric on the Universal Teichmuller Space PDF Author: Leon Armenovich Takhtadzhi︠a︡n
Publisher: American Mathematical Soc.
ISBN: 0821839365
Category : Mathematics
Languages : en
Pages : 136

Get Book Here

Book Description
In this memoir, we prove that the universal Teichmuller space $T(1)$ carries a new structure of a complex Hilbert manifold and show that the connected component of the identity of $T(1)$ -- the Hilbert submanifold $T {0 (1)$ -- is a topological group. We define a Weil-Petersson metric on $T(1)$ by Hilbert space inner products on tangent spaces, compute its Riemann curvature tensor, and show that $T(1)$ is a Kahler-Einstein manifold with negative Ricci and sectional curvatures. We introduce and compute Mumford-Miller-Morita characteristic forms for the vertical tangent bundle of the universal Teichmuller curve fibration over the universal Teichmuller space. As an application, we derive Wolpert curvature formulas for the finite-dimensional Teichmuller spaces from the formulas for the universal Teichmuller space. We study in detail the Hilbert manifold structure on $T {0 (1)$ and characterize points on $T {0 (1)$ in terms of Bers and pre-Bers embeddings by proving that the Grunsky operators $B {1 $ and The results of this memoir were presented in our e-prints: Weil-Petersson metric on the universal Teichmuller space I. Curvature properties and Chern forms, arXiv:math.CV/0312172 (2003), and Weil-Petersson metric on the universal Teichmuller space II. Kahler potential and period mapping, arXiv:math.CV/0406408 (2004).

Operator Valued Hardy Spaces

Operator Valued Hardy Spaces PDF Author: Tao Mei
Publisher: American Mathematical Soc.
ISBN: 0821839802
Category : Mathematics
Languages : en
Pages : 78

Get Book Here

Book Description
The author gives a systematic study of the Hardy spaces of functions with values in the noncommutative $Lp$-spaces associated with a semifinite von Neumann algebra $\mathcal{M .$ This is motivated by matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), as well as by the recent development of noncommutative martingale inequalities. in this paper noncommutative Hardy spaces are defined by noncommutative Lusin integral function, and it isproved that they are equivalent to those defined by noncommutative Littlewood-Paley G-functions. The main results of this paper include: (i) The analogue in the author's setting of the classical Fefferman duality theorem between $\mathcal{H 1$ and $\mathrm{BMO $. (ii) The atomic decomposition of theauthor's noncommutative $\mathcal{H 1.$ (iii) The equivalence between the norms of the noncommutative Hardy spaces and of the noncommutative $Lp$-spaces $(1

The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra

The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra PDF Author: Michael Kapovich
Publisher: American Mathematical Soc.
ISBN: 0821840541
Category : Mathematics
Languages : en
Pages : 98

Get Book Here

Book Description
In this paper the authors apply their results on the geometry of polygons in infinitesimal symmetric spaces and symmetric spaces and buildings to four problems in algebraic group theory. Two of these problems are generalizations of the problems of finding the constraints on the eigenvalues (resp. singular values) of a sum (resp. product) when the eigenvalues (singular values) of each summand (factor) are fixed. The other two problems are related to the nonvanishing of the structure constants of the (spherical) Hecke and representation rings associated with a split reductive algebraic group over $\mathbb{Q}$ and its complex Langlands' dual. The authors give a new proof of the Saturation Conjecture for $GL(\ell)$ as a consequence of their solution of the corresponding saturation problem for the Hecke structure constants for all split reductive algebraic groups over $\mathbb{Q}$.

Invariant Differential Operators for Quantum Symmetric Spaces

Invariant Differential Operators for Quantum Symmetric Spaces PDF Author: Gail Letzter
Publisher: American Mathematical Soc.
ISBN: 0821841319
Category : Mathematics
Languages : en
Pages : 104

Get Book Here

Book Description
This paper studies quantum invariant differential operators for quantum symmetric spaces in the maximally split case. The main results are quantum versions of theorems of Harish-Chandra and Helgason: There is a Harish-Chandra map which induces an isomorphism between the ring of quantum invariant differential operators and the ring of invariants of a certain Laurent polynomial ring under an action of the restricted Weyl group. Moreover, the image of the center under this map is the entire invariant ring if and only if the underlying irreducible symmetric pair is not of four exceptional types. In the process, the author finds a particularly nice basis for the quantum invariant differential operators that provides a new interpretation of difference operators associated to Macdonald polynomials.

Hardy Spaces and Potential Theory on $C^1$ Domains in Riemannian Manifolds

Hardy Spaces and Potential Theory on $C^1$ Domains in Riemannian Manifolds PDF Author: Martin Dindoš
Publisher: American Mathematical Soc.
ISBN: 0821840436
Category : Mathematics
Languages : en
Pages : 92

Get Book Here

Book Description
The author studies Hardy spaces on C1 and Lipschitz domains in Riemannian manifolds. Hardy spaces, originally introduced in 1920 in complex analysis setting, are invaluable tool in harmonic analysis. For this reason these spaces have been studied extensively by many authors.