Author: Zhuomin M. Zhang
Publisher: Springer Nature
ISBN: 3030450392
Category : Science
Languages : en
Pages : 780
Book Description
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
Nano/Microscale Heat Transfer
Author: Zhuomin M. Zhang
Publisher: Springer Nature
ISBN: 3030450392
Category : Science
Languages : en
Pages : 780
Book Description
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
Publisher: Springer Nature
ISBN: 3030450392
Category : Science
Languages : en
Pages : 780
Book Description
This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.
Microscale and Nanoscale Heat Transfer
Author: C.B. Sobhan
Publisher: CRC Press
ISBN: 1420007114
Category : Science
Languages : en
Pages : 440
Book Description
Through analyses, experimental results, and worked-out numerical examples, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications explores the methods and observations of thermophysical phenomena in size-affected domains. Compiling the most relevant findings from the literature, along with results from their own re
Publisher: CRC Press
ISBN: 1420007114
Category : Science
Languages : en
Pages : 440
Book Description
Through analyses, experimental results, and worked-out numerical examples, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications explores the methods and observations of thermophysical phenomena in size-affected domains. Compiling the most relevant findings from the literature, along with results from their own re
Nanoscale Energy Transport and Conversion
Author: Gang Chen
Publisher: Oxford University Press
ISBN: 9780199774685
Category : Science
Languages : en
Pages : 570
Book Description
This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.
Publisher: Oxford University Press
ISBN: 9780199774685
Category : Science
Languages : en
Pages : 570
Book Description
This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.
The Physics of Phonons
Author: Gyaneshwar P. Srivastava
Publisher: Routledge
ISBN: 1351409557
Category : Science
Languages : en
Pages : 438
Book Description
There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.
Publisher: Routledge
ISBN: 1351409557
Category : Science
Languages : en
Pages : 438
Book Description
There have been few books devoted to the study of phonons, a major area of condensed matter physics. The Physics of Phonons is a comprehensive theoretical discussion of the most important topics, including some topics not previously presented in book form. Although primarily theoretical in approach, the author refers to experimental results wherever possible, ensuring an ideal book for both experimental and theoretical researchers. The author begins with an introduction to crystal symmetry and continues with a discussion of lattice dynamics in the harmonic approximation, including the traditional phenomenological approach and the more recent ab initio approach, detailed for the first time in this book. A discussion of anharmonicity is followed by the theory of lattice thermal conductivity, presented at a level far beyond that available in any other book. The chapter on phonon interactions is likewise more comprehensive than any similar discussion elsewhere. The sections on phonons in superlattices, impure and mixed crystals, quasicrystals, phonon spectroscopy, Kapitza resistance, and quantum evaporation also contain material appearing in book form for the first time. The book is complemented by numerous diagrams that aid understanding and is comprehensively referenced for further study. With its unprecedented wide coverage of the field, The Physics of Phonons will be indispensable to all postgraduates, advanced undergraduates, and researchers working on condensed matter physics.
Non-Fourier Heat Conduction
Author: Alexander I. Zhmakin
Publisher: Springer Nature
ISBN: 3031259734
Category : Science
Languages : en
Pages : 419
Book Description
This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.
Publisher: Springer Nature
ISBN: 3031259734
Category : Science
Languages : en
Pages : 419
Book Description
This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.
Microscale Heat Conduction in Integrated Circuits and Their Constituent Films
Author: Y. Sungtaek Ju
Publisher: Springer Science & Business Media
ISBN: 1461552117
Category : Technology & Engineering
Languages : en
Pages : 115
Book Description
The study of thermal phenomena in microdevices has attracted significant attention recently. The interdisciplinary nature of this topic, however, makes it very difficult for researchers to fully understand details of research results presented in journal articles. For many researchers intending to be active in this field, therefore, a more comprehensive treatment, complete with sufficient background information, is urgently needed. Advances in semiconductor device technology render the thermal characterization and design of ICs increasingly more important. The present book discusses experimental and theoretical studies of heat transfer in transistors and interconnects. A novel optical thermometry technique captures temperature fields with high temporal and spatial failures in devices that are subjected to electrical overstress (EOS) and electrostatic discharge (ESD). Also reported are techniques for determining the thermal transport properties of dielectric passivation layers and ultra-thin silicon-on-insulator (SOI) layers. Theoretical analysis on the data yields insight into the dependence of thermal properties on film processing conditions. The techniques and data presented here will greatly aid the thermal engineering of interconnects and transistors.
Publisher: Springer Science & Business Media
ISBN: 1461552117
Category : Technology & Engineering
Languages : en
Pages : 115
Book Description
The study of thermal phenomena in microdevices has attracted significant attention recently. The interdisciplinary nature of this topic, however, makes it very difficult for researchers to fully understand details of research results presented in journal articles. For many researchers intending to be active in this field, therefore, a more comprehensive treatment, complete with sufficient background information, is urgently needed. Advances in semiconductor device technology render the thermal characterization and design of ICs increasingly more important. The present book discusses experimental and theoretical studies of heat transfer in transistors and interconnects. A novel optical thermometry technique captures temperature fields with high temporal and spatial failures in devices that are subjected to electrical overstress (EOS) and electrostatic discharge (ESD). Also reported are techniques for determining the thermal transport properties of dielectric passivation layers and ultra-thin silicon-on-insulator (SOI) layers. Theoretical analysis on the data yields insight into the dependence of thermal properties on film processing conditions. The techniques and data presented here will greatly aid the thermal engineering of interconnects and transistors.
Handbook of Nanophysics
Author: Klaus D. Sattler
Publisher: CRC Press
ISBN: 1420075454
Category : Science
Languages : en
Pages : 718
Book Description
In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and struct
Publisher: CRC Press
ISBN: 1420075454
Category : Science
Languages : en
Pages : 718
Book Description
In the 1990s, nanoparticles and quantum dots began to be used in optical, electronic, and biological applications. Now they are being studied for use in solid-state quantum computation, tumor imaging, and photovoltaics. Handbook of Nanophysics: Nanoparticles and Quantum Dots focuses on the fundamental physics of these nanoscale materials and struct
Micro and Nano Thermal Transport
Author: Lin Qiu
Publisher: Academic Press
ISBN: 012823623X
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
Micro and Nano Thermal Transport Research: Characterization, Measurement and Mechanism is a complete and reliable reference on thermal measurement methods and mechanisms of micro and nanoscale materials. The book has a strong focus on applications and simulation, providing clear guidance on how to measure thermal properties in a systematic way. Sections cover the fundamentals of thermal properties before introducing tools to help readers identify and analyze thermal characteristics of these materials. The thermal transport properties are then further explored by means of simulation which reflect the internal mechanisms used to generate such thermal properties. Readers will gain a clear understanding of thermophysical measurement methods and the representative thermal transport characteristics of micro/nanoscale materials with different structures and are guided through a decision-making process to choose the most effective method to master thermal analysis. The book is particularly suitable for those engaged in the design and development of thermal property measurement instruments, as well as researchers of thermal transport at the micro and nanoscale. - Includes a variety of measurement methods and thermal transport characteristics of micro and nanoscale materials under different structures - Guides the reader through the decision-making process to ensure the best thermal analysis method is selected for their setting - Contains experiments and simulations throughout that help apply understanding to practice
Publisher: Academic Press
ISBN: 012823623X
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
Micro and Nano Thermal Transport Research: Characterization, Measurement and Mechanism is a complete and reliable reference on thermal measurement methods and mechanisms of micro and nanoscale materials. The book has a strong focus on applications and simulation, providing clear guidance on how to measure thermal properties in a systematic way. Sections cover the fundamentals of thermal properties before introducing tools to help readers identify and analyze thermal characteristics of these materials. The thermal transport properties are then further explored by means of simulation which reflect the internal mechanisms used to generate such thermal properties. Readers will gain a clear understanding of thermophysical measurement methods and the representative thermal transport characteristics of micro/nanoscale materials with different structures and are guided through a decision-making process to choose the most effective method to master thermal analysis. The book is particularly suitable for those engaged in the design and development of thermal property measurement instruments, as well as researchers of thermal transport at the micro and nanoscale. - Includes a variety of measurement methods and thermal transport characteristics of micro and nanoscale materials under different structures - Guides the reader through the decision-making process to ensure the best thermal analysis method is selected for their setting - Contains experiments and simulations throughout that help apply understanding to practice
Mechanics Over Micro and Nano Scales
Author: Suman Chakraborty
Publisher: Springer Science & Business Media
ISBN: 144199601X
Category : Technology & Engineering
Languages : en
Pages : 275
Book Description
Mechanics Over Micro and Nano Scales covers the recent developments in the fields of mechanics in all forms over micro, meso and nano scales. Special emphasis is given to related novel applications and includes fundamental aspects of fluid and solid mechanics, soft matters, scaling laws, and synthetic biology. At the micro and nano scales, realization of many technologically viable ideas relies on the skillful integration of mechanics at macroscopic and molecular levels, both for solids as well as fluids. Research in the related areas is no longer confined to the understanding of the governing the physics of the system, but is also responsible for triggering a technological revolution at small scales. This book also: discusses the fundamentals of mechanics over micro and nano scales in a level accessible to multi-disciplinary researchers, with a balance of mathematical details and physical principles, covers life sciences and chemistry for use in emerging applications related to mechanics over small scales and demonstrates the explicit interconnection between various scale issues and the mechanics of miniaturized systems. Mechanics Over Micro and Nano Scales is an ideal book for researchers and engineers working in mechanics of both solids and fluids.
Publisher: Springer Science & Business Media
ISBN: 144199601X
Category : Technology & Engineering
Languages : en
Pages : 275
Book Description
Mechanics Over Micro and Nano Scales covers the recent developments in the fields of mechanics in all forms over micro, meso and nano scales. Special emphasis is given to related novel applications and includes fundamental aspects of fluid and solid mechanics, soft matters, scaling laws, and synthetic biology. At the micro and nano scales, realization of many technologically viable ideas relies on the skillful integration of mechanics at macroscopic and molecular levels, both for solids as well as fluids. Research in the related areas is no longer confined to the understanding of the governing the physics of the system, but is also responsible for triggering a technological revolution at small scales. This book also: discusses the fundamentals of mechanics over micro and nano scales in a level accessible to multi-disciplinary researchers, with a balance of mathematical details and physical principles, covers life sciences and chemistry for use in emerging applications related to mechanics over small scales and demonstrates the explicit interconnection between various scale issues and the mechanics of miniaturized systems. Mechanics Over Micro and Nano Scales is an ideal book for researchers and engineers working in mechanics of both solids and fluids.
Heat Conduction
Author: Jordan Hristov
Publisher: Nova Science Publishers
ISBN: 9781536146738
Category : Heat
Languages : en
Pages : 0
Book Description
Heat conduction plays an important role in energy transfer at the macro, micro and nano scales. This book collates research results developed by scientists from different countries but with common research interest in the modelling of heat conduction problems. The results reported encompass heat conduction problems related to the Stefan problem, phase change materials related to energy consumption in buildings, the porous media problem with Bingham plastic fluids, thermosolutal convection, rewetting problems and fractional models with singular and non-singular kernels. The variety of analytical and numerical techniques used includes the classical heat-balance integral method in its refined version, double-integration technique and variational formulation applied to the integer-order and fractional models with memories.This book cannot present the entire rich area of problems related to heat conduction, but allows readers to see some new trends and approaches in the modelling technologies. In this context, the fractional models with singular and non-singular kernels and the development of the integration techniques related to the integral-balance approach form fresh fluxes of ideas to this classical engineering area of research.The book is oriented to researchers, masters and PhD students involved in heat conduction problems with a variety of applications and could serve as a rich reference source and a collection of texts provoking new ideas.
Publisher: Nova Science Publishers
ISBN: 9781536146738
Category : Heat
Languages : en
Pages : 0
Book Description
Heat conduction plays an important role in energy transfer at the macro, micro and nano scales. This book collates research results developed by scientists from different countries but with common research interest in the modelling of heat conduction problems. The results reported encompass heat conduction problems related to the Stefan problem, phase change materials related to energy consumption in buildings, the porous media problem with Bingham plastic fluids, thermosolutal convection, rewetting problems and fractional models with singular and non-singular kernels. The variety of analytical and numerical techniques used includes the classical heat-balance integral method in its refined version, double-integration technique and variational formulation applied to the integer-order and fractional models with memories.This book cannot present the entire rich area of problems related to heat conduction, but allows readers to see some new trends and approaches in the modelling technologies. In this context, the fractional models with singular and non-singular kernels and the development of the integration techniques related to the integral-balance approach form fresh fluxes of ideas to this classical engineering area of research.The book is oriented to researchers, masters and PhD students involved in heat conduction problems with a variety of applications and could serve as a rich reference source and a collection of texts provoking new ideas.