Author: Serge Preston
Publisher: Springer
ISBN: 3319283235
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
This text presents and studies the method of so –called noncommuting variations in Variational Calculus. This method was pioneered by Vito Volterra who noticed that the conventional Euler-Lagrange (EL-) equations are not applicable in Non-Holonomic Mechanics and suggested to modify the basic rule used in Variational Calculus. This book presents a survey of Variational Calculus with non-commutative variations and shows that most basic properties of conventional Euler-Lagrange Equations are, with some modifications, preserved for EL-equations with K-twisted (defined by K)-variations. Most of the book can be understood by readers without strong mathematical preparation (some knowledge of Differential Geometry is necessary). In order to make the text more accessible the definitions and several necessary results in Geometry are presented separately in Appendices I and II Furthermore in Appendix III a short presentation of the Noether Theorem describing the relation between the symmetries of the differential equations with dissipation and corresponding s balance laws is presented.
Non-commuting Variations in Mathematics and Physics
Extended Abstracts 2021/2022
Author: Michael Ruzhansky
Publisher: Springer Nature
ISBN: 3031425391
Category :
Languages : en
Pages : 302
Book Description
Publisher: Springer Nature
ISBN: 3031425391
Category :
Languages : en
Pages : 302
Book Description
Noncommutative Geometry And Physics 2005 - Proceedings Of The International Sendai-beijing Joint Workshop
Author: Ursula Carow-watamura
Publisher: World Scientific
ISBN: 981447620X
Category : Science
Languages : en
Pages : 333
Book Description
Noncommutative geometry is a novel approach which is opening up new possibilities for geometry from a mathematical viewpoint. It is also providing new tools for the investigation of quantum space-time in physics. Recent developments in string theory have supported the idea of quantum spaces, and have strongly stimulated the research in this field. This self-contained volume contains survey lectures and research articles which address these issues and related topics. The book is accessible to both researchers and graduate students beginning to study this subject.
Publisher: World Scientific
ISBN: 981447620X
Category : Science
Languages : en
Pages : 333
Book Description
Noncommutative geometry is a novel approach which is opening up new possibilities for geometry from a mathematical viewpoint. It is also providing new tools for the investigation of quantum space-time in physics. Recent developments in string theory have supported the idea of quantum spaces, and have strongly stimulated the research in this field. This self-contained volume contains survey lectures and research articles which address these issues and related topics. The book is accessible to both researchers and graduate students beginning to study this subject.
Noncommutative Geometry, Arithmetic, and Related Topics
Author: Caterina Consani
Publisher: JHU Press
ISBN: 1421403528
Category : Mathematics
Languages : en
Pages : 324
Book Description
Mathematics Institute, these essays collectively provide mathematicians and physicists with a comprehensive resource on the topic.
Publisher: JHU Press
ISBN: 1421403528
Category : Mathematics
Languages : en
Pages : 324
Book Description
Mathematics Institute, these essays collectively provide mathematicians and physicists with a comprehensive resource on the topic.
The Physics of Reality
Author: Richard L. Amoroso
Publisher: World Scientific
ISBN: 9814504785
Category : Mathematical physics
Languages : en
Pages : 553
Book Description
A truly Galilean-class volume, this book introduces a new method in theory formation, completing the tools of epistemology. It covers a broad spectrum of theoretical and mathematical physics by researchers from over 20 nations from four continents. Like Vigier himself, the Vigier symposia are noted for addressing avant-garde, cutting-edge topics in contemporary physics. Among the six proceedings honoring J.-P. Vigier, this is perhaps the most exciting one as several important breakthroughs are introduced for the first time. The most interesting breakthrough in view of the recent NIST experimental violations of QED is a continuation of the pioneering work by Vigier on tight bound states in hydrogen. The new experimental protocol described not only promises empirical proof of large-scale extra dimensions in conjunction with avenues for testing string theory, but also implies the birth of the field of unified field mechanics, ushering in a new age of discovery. Work on quantum computing redefines the qubit in a manner that the uncertainty principle may be routinely violated. Other breakthroughs occur in the utility of quaternion algebra in extending our understanding of the nature of the fermionic singularity or point particle. There are several other discoveries of equal magnitude, making this volume a must-have acquisition for the library of any serious forward-looking researchers.
Publisher: World Scientific
ISBN: 9814504785
Category : Mathematical physics
Languages : en
Pages : 553
Book Description
A truly Galilean-class volume, this book introduces a new method in theory formation, completing the tools of epistemology. It covers a broad spectrum of theoretical and mathematical physics by researchers from over 20 nations from four continents. Like Vigier himself, the Vigier symposia are noted for addressing avant-garde, cutting-edge topics in contemporary physics. Among the six proceedings honoring J.-P. Vigier, this is perhaps the most exciting one as several important breakthroughs are introduced for the first time. The most interesting breakthrough in view of the recent NIST experimental violations of QED is a continuation of the pioneering work by Vigier on tight bound states in hydrogen. The new experimental protocol described not only promises empirical proof of large-scale extra dimensions in conjunction with avenues for testing string theory, but also implies the birth of the field of unified field mechanics, ushering in a new age of discovery. Work on quantum computing redefines the qubit in a manner that the uncertainty principle may be routinely violated. Other breakthroughs occur in the utility of quaternion algebra in extending our understanding of the nature of the fermionic singularity or point particle. There are several other discoveries of equal magnitude, making this volume a must-have acquisition for the library of any serious forward-looking researchers.
Noncommutative Geometry, Quantum Fields and Motives
Author: Alain Connes
Publisher: American Mathematical Soc.
ISBN: 1470450453
Category : Mathematics
Languages : en
Pages : 810
Book Description
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Publisher: American Mathematical Soc.
ISBN: 1470450453
Category : Mathematics
Languages : en
Pages : 810
Book Description
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Advanced Calculus (Revised Edition)
Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Noncommutative Geometry
Author: Alain Connes
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364
Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364
Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds
Author: Taeyoung Lee
Publisher: Springer
ISBN: 3319569538
Category : Mathematics
Languages : en
Pages : 561
Book Description
This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.
Publisher: Springer
ISBN: 3319569538
Category : Mathematics
Languages : en
Pages : 561
Book Description
This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.
Optimal Transport for Applied Mathematicians
Author: Filippo Santambrogio
Publisher: Birkhäuser
ISBN: 3319208284
Category : Mathematics
Languages : en
Pages : 376
Book Description
This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.
Publisher: Birkhäuser
ISBN: 3319208284
Category : Mathematics
Languages : en
Pages : 376
Book Description
This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.