Author: Pei Wang
Publisher: World Scientific
ISBN: 9814440280
Category : Computers
Languages : en
Pages : 275
Book Description
This book provides a systematic and comprehensive description of Non-Axiomatic Logic, which is the result of the author''s research for about three decades.Non-Axiomatic Logic is designed to provide a uniform logical foundation for Artificial Intelligence, as well as an abstract description of the OC laws of thoughtOCO followed by the human mind. Different from OC mathematicalOCO logic, where the focus is the regularity required when demonstrating mathematical conclusions, Non-Axiomatic Logic is an attempt to return to the original aim of logic, that is, to formulate the regularity in actual human thinking. To achieve this goal, the logic is designed under the assumption that the system has insufficient knowledge and resources with respect to the problems to be solved, so that the OC logical conclusionsOCO are only valid with respect to the available knowledge and resources. Reasoning processes according to this logic covers cognitive functions like learning, planning, decision making, problem solving, This book is written for researchers and students in Artificial Intelligence and Cognitive Science, and can be used as a textbook for courses at graduate level, or upper-level undergraduate, on Non-Axiomatic Logic."
Non-axiomatic Logic
Author: Pei Wang
Publisher: World Scientific
ISBN: 9814440280
Category : Computers
Languages : en
Pages : 275
Book Description
This book provides a systematic and comprehensive description of Non-Axiomatic Logic, which is the result of the author''s research for about three decades.Non-Axiomatic Logic is designed to provide a uniform logical foundation for Artificial Intelligence, as well as an abstract description of the OC laws of thoughtOCO followed by the human mind. Different from OC mathematicalOCO logic, where the focus is the regularity required when demonstrating mathematical conclusions, Non-Axiomatic Logic is an attempt to return to the original aim of logic, that is, to formulate the regularity in actual human thinking. To achieve this goal, the logic is designed under the assumption that the system has insufficient knowledge and resources with respect to the problems to be solved, so that the OC logical conclusionsOCO are only valid with respect to the available knowledge and resources. Reasoning processes according to this logic covers cognitive functions like learning, planning, decision making, problem solving, This book is written for researchers and students in Artificial Intelligence and Cognitive Science, and can be used as a textbook for courses at graduate level, or upper-level undergraduate, on Non-Axiomatic Logic."
Publisher: World Scientific
ISBN: 9814440280
Category : Computers
Languages : en
Pages : 275
Book Description
This book provides a systematic and comprehensive description of Non-Axiomatic Logic, which is the result of the author''s research for about three decades.Non-Axiomatic Logic is designed to provide a uniform logical foundation for Artificial Intelligence, as well as an abstract description of the OC laws of thoughtOCO followed by the human mind. Different from OC mathematicalOCO logic, where the focus is the regularity required when demonstrating mathematical conclusions, Non-Axiomatic Logic is an attempt to return to the original aim of logic, that is, to formulate the regularity in actual human thinking. To achieve this goal, the logic is designed under the assumption that the system has insufficient knowledge and resources with respect to the problems to be solved, so that the OC logical conclusionsOCO are only valid with respect to the available knowledge and resources. Reasoning processes according to this logic covers cognitive functions like learning, planning, decision making, problem solving, This book is written for researchers and students in Artificial Intelligence and Cognitive Science, and can be used as a textbook for courses at graduate level, or upper-level undergraduate, on Non-Axiomatic Logic."
Rigid Flexibility
Author: Pei Wang
Publisher: Springer Science & Business Media
ISBN: 1402050453
Category : Computers
Languages : en
Pages : 420
Book Description
This book is the most comprehensive description of the decades-long Non-Axiomatic Reasoning System (NARS) project, including its philosophical foundation, methodological consideration, conceptual design details, implications in the related fields, and its similarities and differences to many related works in cognitive science. While most current works in Artificial Intelligence (AI) focus on individual aspects of intelligence and cognition, NARS is designed and developed to attack the AI problem as a whole.
Publisher: Springer Science & Business Media
ISBN: 1402050453
Category : Computers
Languages : en
Pages : 420
Book Description
This book is the most comprehensive description of the decades-long Non-Axiomatic Reasoning System (NARS) project, including its philosophical foundation, methodological consideration, conceptual design details, implications in the related fields, and its similarities and differences to many related works in cognitive science. While most current works in Artificial Intelligence (AI) focus on individual aspects of intelligence and cognition, NARS is designed and developed to attack the AI problem as a whole.
Principia Mathematica
Author: Alfred North Whitehead
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 688
Book Description
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 688
Book Description
Axiomatic Theories of Truth
Author: Volker Halbach
Publisher: Cambridge University Press
ISBN: 1316584232
Category : Philosophy
Languages : en
Pages : 362
Book Description
At the centre of the traditional discussion of truth is the question of how truth is defined. Recent research, especially with the development of deflationist accounts of truth, has tended to take truth as an undefined primitive notion governed by axioms, while the liar paradox and cognate paradoxes pose problems for certain seemingly natural axioms for truth. In this book, Volker Halbach examines the most important axiomatizations of truth, explores their properties and shows how the logical results impinge on the philosophical topics related to truth. In particular, he shows that the discussion on topics such as deflationism about truth depends on the solution of the paradoxes. His book is an invaluable survey of the logical background to the philosophical discussion of truth, and will be indispensable reading for any graduate or professional philosopher in theories of truth.
Publisher: Cambridge University Press
ISBN: 1316584232
Category : Philosophy
Languages : en
Pages : 362
Book Description
At the centre of the traditional discussion of truth is the question of how truth is defined. Recent research, especially with the development of deflationist accounts of truth, has tended to take truth as an undefined primitive notion governed by axioms, while the liar paradox and cognate paradoxes pose problems for certain seemingly natural axioms for truth. In this book, Volker Halbach examines the most important axiomatizations of truth, explores their properties and shows how the logical results impinge on the philosophical topics related to truth. In particular, he shows that the discussion on topics such as deflationism about truth depends on the solution of the paradoxes. His book is an invaluable survey of the logical background to the philosophical discussion of truth, and will be indispensable reading for any graduate or professional philosopher in theories of truth.
Inexhaustibility
Author: Torkel Franzén
Publisher: Cambridge University Press
ISBN: 1108641636
Category : Mathematics
Languages : en
Pages : 318
Book Description
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the sixteenth publication in the Lecture Notes in Logic series, gives a sustained presentation of a particular view of the topic of Gödelian extensions of theories. It presents the basic material in predicate logic, set theory and recursion theory, leading to a proof of Gödel's incompleteness theorems. The inexhaustibility of mathematics is treated based on the concept of transfinite progressions of theories as conceived by Turing and Feferman. All concepts and results are introduced as needed, making the presentation self-contained and thorough. Philosophers, mathematicians and others will find the book helpful in acquiring a basic grasp of the philosophical and logical results and issues.
Publisher: Cambridge University Press
ISBN: 1108641636
Category : Mathematics
Languages : en
Pages : 318
Book Description
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the sixteenth publication in the Lecture Notes in Logic series, gives a sustained presentation of a particular view of the topic of Gödelian extensions of theories. It presents the basic material in predicate logic, set theory and recursion theory, leading to a proof of Gödel's incompleteness theorems. The inexhaustibility of mathematics is treated based on the concept of transfinite progressions of theories as conceived by Turing and Feferman. All concepts and results are introduced as needed, making the presentation self-contained and thorough. Philosophers, mathematicians and others will find the book helpful in acquiring a basic grasp of the philosophical and logical results and issues.
Axiomatic Set Theory
Author: Patrick Suppes
Publisher: Courier Corporation
ISBN: 0486136876
Category : Mathematics
Languages : en
Pages : 290
Book Description
Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.
Publisher: Courier Corporation
ISBN: 0486136876
Category : Mathematics
Languages : en
Pages : 290
Book Description
Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.
Classical and Nonclassical Logics
Author: Eric Schechter
Publisher: Princeton University Press
ISBN: 9780691122793
Category : Mathematics
Languages : en
Pages : 530
Book Description
Classical logic is traditionally introduced by itself, but that makes it seem arbitrary and unnatural. This text introduces classical alongside several nonclassical logics (relevant, constructive, quantative, paraconsistent).
Publisher: Princeton University Press
ISBN: 9780691122793
Category : Mathematics
Languages : en
Pages : 530
Book Description
Classical logic is traditionally introduced by itself, but that makes it seem arbitrary and unnatural. This text introduces classical alongside several nonclassical logics (relevant, constructive, quantative, paraconsistent).
A Profile of Mathematical Logic
Author: Howard DeLong
Publisher: Courier Corporation
ISBN: 0486139158
Category : Mathematics
Languages : en
Pages : 322
Book Description
This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.
Publisher: Courier Corporation
ISBN: 0486139158
Category : Mathematics
Languages : en
Pages : 322
Book Description
This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.
Systems of Formal Logic
Author: L.H. Hackstaff
Publisher: Springer Science & Business Media
ISBN: 9401035474
Category : Philosophy
Languages : en
Pages : 367
Book Description
The present work constitutes an effort to approach the subject of symbol ic logic at the elementary to intermediate level in a novel way. The book is a study of a number of systems, their methods, their rela tions, their differences. In pursuit of this goal, a chapter explaining basic concepts of modern logic together with the truth-table techniques of definition and proof is first set out. In Chapter 2 a kind of ur-Iogic is built up and deductions are made on the basis of its axioms and rules. This axiom system, resembling a propositional system of Hilbert and Ber nays, is called P +, since it is a positive logic, i. e. , a logic devoid of nega tion. This system serves as a basis upon which a variety of further sys tems are constructed, including, among others, a full classical proposi tional calculus, an intuitionistic system, a minimum propositional calcu lus, a system equivalent to that of F. B. Fitch (Chapters 3 and 6). These are developed as axiomatic systems. By means of adding independent axioms to the basic system P +, the notions of independence both for primitive functors and for axiom sets are discussed, the axiom sets for a number of such systems, e. g. , Frege's propositional calculus, being shown to be non-independent. Equivalence and non-equivalence of systems are discussed in the same context. The deduction theorem is proved in Chapter 3 for all the axiomatic propositional calculi in the book.
Publisher: Springer Science & Business Media
ISBN: 9401035474
Category : Philosophy
Languages : en
Pages : 367
Book Description
The present work constitutes an effort to approach the subject of symbol ic logic at the elementary to intermediate level in a novel way. The book is a study of a number of systems, their methods, their rela tions, their differences. In pursuit of this goal, a chapter explaining basic concepts of modern logic together with the truth-table techniques of definition and proof is first set out. In Chapter 2 a kind of ur-Iogic is built up and deductions are made on the basis of its axioms and rules. This axiom system, resembling a propositional system of Hilbert and Ber nays, is called P +, since it is a positive logic, i. e. , a logic devoid of nega tion. This system serves as a basis upon which a variety of further sys tems are constructed, including, among others, a full classical proposi tional calculus, an intuitionistic system, a minimum propositional calcu lus, a system equivalent to that of F. B. Fitch (Chapters 3 and 6). These are developed as axiomatic systems. By means of adding independent axioms to the basic system P +, the notions of independence both for primitive functors and for axiom sets are discussed, the axiom sets for a number of such systems, e. g. , Frege's propositional calculus, being shown to be non-independent. Equivalence and non-equivalence of systems are discussed in the same context. The deduction theorem is proved in Chapter 3 for all the axiomatic propositional calculi in the book.
A Concise Introduction to Logic
Author: Craig DeLancey
Publisher: Open SUNY Textbooks
ISBN: 9781942341437
Category :
Languages : en
Pages :
Book Description
Publisher: Open SUNY Textbooks
ISBN: 9781942341437
Category :
Languages : en
Pages :
Book Description