Author: Sisir Roy
Publisher: Springer Nature
ISBN: 9811695830
Category : Medical
Languages : en
Pages : 166
Book Description
This book illustrates the role of randomness and noise in living organisms. Traditionally, the randomness and noise have been used in understanding signal processing in communications. This book is divided into two sections, the first of which introduces readers to the various types and sources of noise and the constructive role of noise in non-linear dynamics. It also analyses the importance of randomness and noise in a variety of science and engineering applications. In turn, the second section discusses in detail the functional role of noise in biological processes for example, in case of brain function at the level of ion channel, synaptic level and even at cognitive level. These are described in various chapters. One of the challenging issue finding the neuronal correlates of various meditative states is to understand how brain controls various types of noise so as to reach a state of synchronized oscillatory state of the brain corresponding to the state of Samadhi. This is described in details in one chapter called Noise, Coherence and meditation. The concept of noise and the role of randomness in living organism raise lot of controversy for last few decades. This is discussed in a separate chapter. Finally, the epistemic and ontic nature of randomness as discussed in physical science are investigated in the context of living organism.
Noise and Randomness in Living System
Author: Sisir Roy
Publisher: Springer Nature
ISBN: 9811695830
Category : Medical
Languages : en
Pages : 166
Book Description
This book illustrates the role of randomness and noise in living organisms. Traditionally, the randomness and noise have been used in understanding signal processing in communications. This book is divided into two sections, the first of which introduces readers to the various types and sources of noise and the constructive role of noise in non-linear dynamics. It also analyses the importance of randomness and noise in a variety of science and engineering applications. In turn, the second section discusses in detail the functional role of noise in biological processes for example, in case of brain function at the level of ion channel, synaptic level and even at cognitive level. These are described in various chapters. One of the challenging issue finding the neuronal correlates of various meditative states is to understand how brain controls various types of noise so as to reach a state of synchronized oscillatory state of the brain corresponding to the state of Samadhi. This is described in details in one chapter called Noise, Coherence and meditation. The concept of noise and the role of randomness in living organism raise lot of controversy for last few decades. This is discussed in a separate chapter. Finally, the epistemic and ontic nature of randomness as discussed in physical science are investigated in the context of living organism.
Publisher: Springer Nature
ISBN: 9811695830
Category : Medical
Languages : en
Pages : 166
Book Description
This book illustrates the role of randomness and noise in living organisms. Traditionally, the randomness and noise have been used in understanding signal processing in communications. This book is divided into two sections, the first of which introduces readers to the various types and sources of noise and the constructive role of noise in non-linear dynamics. It also analyses the importance of randomness and noise in a variety of science and engineering applications. In turn, the second section discusses in detail the functional role of noise in biological processes for example, in case of brain function at the level of ion channel, synaptic level and even at cognitive level. These are described in various chapters. One of the challenging issue finding the neuronal correlates of various meditative states is to understand how brain controls various types of noise so as to reach a state of synchronized oscillatory state of the brain corresponding to the state of Samadhi. This is described in details in one chapter called Noise, Coherence and meditation. The concept of noise and the role of randomness in living organism raise lot of controversy for last few decades. This is discussed in a separate chapter. Finally, the epistemic and ontic nature of randomness as discussed in physical science are investigated in the context of living organism.
Noise
Author: Daniel Kahneman
Publisher: Little, Brown
ISBN: 031645138X
Category : Business & Economics
Languages : en
Pages : 429
Book Description
From the Nobel Prize-winning author of Thinking, Fast and Slow and the coauthor of Nudge, a revolutionary exploration of why people make bad judgments and how to make better ones—"a tour de force” (New York Times). Imagine that two doctors in the same city give different diagnoses to identical patients—or that two judges in the same courthouse give markedly different sentences to people who have committed the same crime. Suppose that different interviewers at the same firm make different decisions about indistinguishable job applicants—or that when a company is handling customer complaints, the resolution depends on who happens to answer the phone. Now imagine that the same doctor, the same judge, the same interviewer, or the same customer service agent makes different decisions depending on whether it is morning or afternoon, or Monday rather than Wednesday. These are examples of noise: variability in judgments that should be identical. In Noise, Daniel Kahneman, Olivier Sibony, and Cass R. Sunstein show the detrimental effects of noise in many fields, including medicine, law, economic forecasting, forensic science, bail, child protection, strategy, performance reviews, and personnel selection. Wherever there is judgment, there is noise. Yet, most of the time, individuals and organizations alike are unaware of it. They neglect noise. With a few simple remedies, people can reduce both noise and bias, and so make far better decisions. Packed with original ideas, and offering the same kinds of research-based insights that made Thinking, Fast and Slow and Nudge groundbreaking New York Times bestsellers, Noise explains how and why humans are so susceptible to noise in judgment—and what we can do about it.
Publisher: Little, Brown
ISBN: 031645138X
Category : Business & Economics
Languages : en
Pages : 429
Book Description
From the Nobel Prize-winning author of Thinking, Fast and Slow and the coauthor of Nudge, a revolutionary exploration of why people make bad judgments and how to make better ones—"a tour de force” (New York Times). Imagine that two doctors in the same city give different diagnoses to identical patients—or that two judges in the same courthouse give markedly different sentences to people who have committed the same crime. Suppose that different interviewers at the same firm make different decisions about indistinguishable job applicants—or that when a company is handling customer complaints, the resolution depends on who happens to answer the phone. Now imagine that the same doctor, the same judge, the same interviewer, or the same customer service agent makes different decisions depending on whether it is morning or afternoon, or Monday rather than Wednesday. These are examples of noise: variability in judgments that should be identical. In Noise, Daniel Kahneman, Olivier Sibony, and Cass R. Sunstein show the detrimental effects of noise in many fields, including medicine, law, economic forecasting, forensic science, bail, child protection, strategy, performance reviews, and personnel selection. Wherever there is judgment, there is noise. Yet, most of the time, individuals and organizations alike are unaware of it. They neglect noise. With a few simple remedies, people can reduce both noise and bias, and so make far better decisions. Packed with original ideas, and offering the same kinds of research-based insights that made Thinking, Fast and Slow and Nudge groundbreaking New York Times bestsellers, Noise explains how and why humans are so susceptible to noise in judgment—and what we can do about it.
Information Processing And Living Systems
Author: Vladimir B Bajic
Publisher: World Scientific
ISBN: 1783260270
Category : Science
Languages : en
Pages : 799
Book Description
Information processing and information flow occur in the course of an organism's development and throughout its lifespan. Organisms do not exist in isolation, but interact with each other constantly within a complex ecosystem. The relationships between organisms, such as those between prey or predator, host and parasite, and between mating partners, are complex and multidimensional. In all cases, there is constant communication and information flow at many levels.This book focuses on information processing by life forms and the use of information technology in understanding them. Readers are first given a comprehensive overview of biocomputing before navigating the complex terrain of natural processing of biological information using physiological and analogous computing models. The remainder of the book deals with “artificial” processing of biological information as a human endeavor in order to derive new knowledge and gain insight into life forms and their functioning. Specific innovative applications and tools for biological discovery are provided as the link and complement to biocomputing.Since “artificial” processing of biological information is complementary to natural processing, a better understanding of the former helps us improve the latter. Consequently, readers are exposed to both domains and, when dealing with biological problems of their interest, will be better equipped to grasp relevant ideas.
Publisher: World Scientific
ISBN: 1783260270
Category : Science
Languages : en
Pages : 799
Book Description
Information processing and information flow occur in the course of an organism's development and throughout its lifespan. Organisms do not exist in isolation, but interact with each other constantly within a complex ecosystem. The relationships between organisms, such as those between prey or predator, host and parasite, and between mating partners, are complex and multidimensional. In all cases, there is constant communication and information flow at many levels.This book focuses on information processing by life forms and the use of information technology in understanding them. Readers are first given a comprehensive overview of biocomputing before navigating the complex terrain of natural processing of biological information using physiological and analogous computing models. The remainder of the book deals with “artificial” processing of biological information as a human endeavor in order to derive new knowledge and gain insight into life forms and their functioning. Specific innovative applications and tools for biological discovery are provided as the link and complement to biocomputing.Since “artificial” processing of biological information is complementary to natural processing, a better understanding of the former helps us improve the latter. Consequently, readers are exposed to both domains and, when dealing with biological problems of their interest, will be better equipped to grasp relevant ideas.
Stochastic Resonance
Author: Mark D. McDonnell
Publisher: Cambridge University Press
ISBN: 9781107411326
Category : Science
Languages : en
Pages : 0
Book Description
The stochastic resonance phenomenon has been observed in many forms of systems and has been debated by scientists for 30 years. Applications incorporating aspects of stochastic resonance have yet to prove revolutionary in fields such as distributed sensor networks, nano-electronics, and biomedical prosthetics. The initial chapters review stochastic resonance basics and outline some of the controversies and debates that have surrounded it. The book continues to discuss stochastic quantization in a model where all threshold devices are not necessarily identical, but are still independently noisy. Finally, it considers various constraints and tradeoffs in the performance of stochastic quantizers. Each chapter ends with a review summarizing the main points, and open questions to guide researchers into finding new research directions.
Publisher: Cambridge University Press
ISBN: 9781107411326
Category : Science
Languages : en
Pages : 0
Book Description
The stochastic resonance phenomenon has been observed in many forms of systems and has been debated by scientists for 30 years. Applications incorporating aspects of stochastic resonance have yet to prove revolutionary in fields such as distributed sensor networks, nano-electronics, and biomedical prosthetics. The initial chapters review stochastic resonance basics and outline some of the controversies and debates that have surrounded it. The book continues to discuss stochastic quantization in a model where all threshold devices are not necessarily identical, but are still independently noisy. Finally, it considers various constraints and tradeoffs in the performance of stochastic quantizers. Each chapter ends with a review summarizing the main points, and open questions to guide researchers into finding new research directions.
The Range of Interpretation
Author: Wolfgang Iser
Publisher: Columbia University Press
ISBN: 9780231119023
Category : Education
Languages : en
Pages : 256
Book Description
"The author formulates an anatomy of interpretation through which we can understand the many different forms that the act of interpretation takes. For Iser, there are several different genres of interpretation, all of which are acts of translation designed to transpose something into something else. Obvious examples involve canonical texts, and here Iser explores, for example, the Rabbinical exegesis of the Torah and Dr. Johnson's reading of Shakespeare. But what happens when the matter that one seeks to interpret consists not of a text but of a welter of fragments, as in the story of history, or is something hidden, as in the practice of psychoanalysis, or is as complex as a culture or a system? He concludes that if interpretation is a form of translation, then it is performative and will always depend on what it seeks to translate rather than on some absolute concept of truth." (Midwest).
Publisher: Columbia University Press
ISBN: 9780231119023
Category : Education
Languages : en
Pages : 256
Book Description
"The author formulates an anatomy of interpretation through which we can understand the many different forms that the act of interpretation takes. For Iser, there are several different genres of interpretation, all of which are acts of translation designed to transpose something into something else. Obvious examples involve canonical texts, and here Iser explores, for example, the Rabbinical exegesis of the Torah and Dr. Johnson's reading of Shakespeare. But what happens when the matter that one seeks to interpret consists not of a text but of a welter of fragments, as in the story of history, or is something hidden, as in the practice of psychoanalysis, or is as complex as a culture or a system? He concludes that if interpretation is a form of translation, then it is performative and will always depend on what it seeks to translate rather than on some absolute concept of truth." (Midwest).
Nonlinearity in Living Systems: Theoretical and Practical Perspectives on Metrics of Physiological Signal Complexity
Author: Sladjana Spasić
Publisher: Frontiers Media SA
ISBN: 2889458946
Category :
Languages : en
Pages : 253
Book Description
The biological basis of physiological signals is incredibly complex. While many types of research certainly appreciate molecular, cellular and systems approach to unravel overall biological complexity, in the recent decades the interest for mathematical and computational characterization of structural and functional basis underlying biological phenomena gain wide popularity among scientists. Nowadays, we witnessed wide range applications of nonlinear quantitative analysis that produced measures such as fractal dimension, power-law scaling, Hurst exponent, Lyapunov exponent, approximate entropy, sample entropy, Lempel–Ziv complexity, as well as other metrics for predictions of onset and progression of many pathological conditions, especially in the central nervous systems (CNS). In this Research Topic, we seek to bring together the recent practical and theoretical advances in the development and application of nonlinear methods or narrower fractal-based methods for characterizing the complex physiological systems at multiple levels of the organization. We will discuss the use of various complexity measures and appropriate parameters for characterizing the variety of physiological signals up to the systems level. There are multiple aims in this topic. The recent advancement in the application of nonlinear methods for both normal and pathological physiological conditions is the first. The second aim is to emphasize the more recent successful attempt to apply these methods across animal species. Finally, a comprehensive understanding of advantages and disadvantages of each method, especially between its mathematical assumptions and real-world applicability, can help to find out what is at stake regarding the above aims and to direct us toward the more fruitful application of nonlinear measures and statistics in physiology and biology in general.
Publisher: Frontiers Media SA
ISBN: 2889458946
Category :
Languages : en
Pages : 253
Book Description
The biological basis of physiological signals is incredibly complex. While many types of research certainly appreciate molecular, cellular and systems approach to unravel overall biological complexity, in the recent decades the interest for mathematical and computational characterization of structural and functional basis underlying biological phenomena gain wide popularity among scientists. Nowadays, we witnessed wide range applications of nonlinear quantitative analysis that produced measures such as fractal dimension, power-law scaling, Hurst exponent, Lyapunov exponent, approximate entropy, sample entropy, Lempel–Ziv complexity, as well as other metrics for predictions of onset and progression of many pathological conditions, especially in the central nervous systems (CNS). In this Research Topic, we seek to bring together the recent practical and theoretical advances in the development and application of nonlinear methods or narrower fractal-based methods for characterizing the complex physiological systems at multiple levels of the organization. We will discuss the use of various complexity measures and appropriate parameters for characterizing the variety of physiological signals up to the systems level. There are multiple aims in this topic. The recent advancement in the application of nonlinear methods for both normal and pathological physiological conditions is the first. The second aim is to emphasize the more recent successful attempt to apply these methods across animal species. Finally, a comprehensive understanding of advantages and disadvantages of each method, especially between its mathematical assumptions and real-world applicability, can help to find out what is at stake regarding the above aims and to direct us toward the more fruitful application of nonlinear measures and statistics in physiology and biology in general.
Introduction to Modern Biophysics
Author: Mohammad Ashrafuzzaman
Publisher: CRC Press
ISBN: 1003821642
Category : Science
Languages : en
Pages : 603
Book Description
This textbook provides an introduction to the fundamental and applied aspects of biophysics for advanced undergraduate and graduate students of physics, chemistry, and biology. The application of physics principles and techniques in exploring biological systems has long been a tradition in scientific research. Biological systems hold naturally inbuilt physical principles and processes which are popularly explored. Systematic discoveries help us understand the structures and functions of individual biomolecules, biomolecular systems, cells, organelles, tissues, and even the physiological systems of animals and plants. Utilizing a physics- based scientific understanding of biological systems to explore disease is at the forefront of applied scientific research. This textbook covers key breakthroughs in biophysics whilst looking ahead to future horizons and directions of research. It contains models based on both classical and quantum mechanical treatments of biological systems. It explores diseases related to physical alterations in biomolecular structures and organizations alongside drug discovery strategies. It also discusses the cutting- edge applications of nanotechnologies in manipulating nanoprocesses in biological systems. Key Features: • Presents an accessible introduction to how physics principles and techniques can be used to understand biological and biochemical systems. • Addresses natural processes, mutations, and their purposeful manipulation. • Lays the groundwork for vitally important natural scientific, technological, and medical advances. Mohammad Ashrafuzzaman, a biophysicist and condensed matter scientist, is passionate about investigating biological and biochemical processes utilizing physics principles and techniques. He is a professor of biophysics at King Saud University’s Biochemistry Department in the College of Science, Riyadh, Saudi Arabia; the co- founder of MDT Canada Inc., and the founder of Child Life Development Institute, Edmonton, Canada. He has authored Biophysics and Nanotechnology of Ion Channels, Nanoscale Biophysics of the Cell, and Membrane Biophysics. He has also published about 50 peer- reviewed articles and several patents, edited two books, and has been serving on the editorial boards of Elsevier and Bentham Science journals. Dr. Ashrafuzzaman has held research and academic ranks at Bangladesh University of Engineering & Technology, University of Neuchatel (Switzerland), Helsinki University of Technology (Finland), Weill Medical College of Cornell University (USA), and University of Alberta (Canada). During 2013– 2018 he also served as a Visiting Professor at the Departments of Oncology, and Medical Microbiology and Immunology, of the University of Alberta. Dr. Ashrafuzzaman earned his highest academic degree, Doctor of Science (D.Sc.) in condensed matter physics from the University of Neuchatel, Switzerland in 2004.
Publisher: CRC Press
ISBN: 1003821642
Category : Science
Languages : en
Pages : 603
Book Description
This textbook provides an introduction to the fundamental and applied aspects of biophysics for advanced undergraduate and graduate students of physics, chemistry, and biology. The application of physics principles and techniques in exploring biological systems has long been a tradition in scientific research. Biological systems hold naturally inbuilt physical principles and processes which are popularly explored. Systematic discoveries help us understand the structures and functions of individual biomolecules, biomolecular systems, cells, organelles, tissues, and even the physiological systems of animals and plants. Utilizing a physics- based scientific understanding of biological systems to explore disease is at the forefront of applied scientific research. This textbook covers key breakthroughs in biophysics whilst looking ahead to future horizons and directions of research. It contains models based on both classical and quantum mechanical treatments of biological systems. It explores diseases related to physical alterations in biomolecular structures and organizations alongside drug discovery strategies. It also discusses the cutting- edge applications of nanotechnologies in manipulating nanoprocesses in biological systems. Key Features: • Presents an accessible introduction to how physics principles and techniques can be used to understand biological and biochemical systems. • Addresses natural processes, mutations, and their purposeful manipulation. • Lays the groundwork for vitally important natural scientific, technological, and medical advances. Mohammad Ashrafuzzaman, a biophysicist and condensed matter scientist, is passionate about investigating biological and biochemical processes utilizing physics principles and techniques. He is a professor of biophysics at King Saud University’s Biochemistry Department in the College of Science, Riyadh, Saudi Arabia; the co- founder of MDT Canada Inc., and the founder of Child Life Development Institute, Edmonton, Canada. He has authored Biophysics and Nanotechnology of Ion Channels, Nanoscale Biophysics of the Cell, and Membrane Biophysics. He has also published about 50 peer- reviewed articles and several patents, edited two books, and has been serving on the editorial boards of Elsevier and Bentham Science journals. Dr. Ashrafuzzaman has held research and academic ranks at Bangladesh University of Engineering & Technology, University of Neuchatel (Switzerland), Helsinki University of Technology (Finland), Weill Medical College of Cornell University (USA), and University of Alberta (Canada). During 2013– 2018 he also served as a Visiting Professor at the Departments of Oncology, and Medical Microbiology and Immunology, of the University of Alberta. Dr. Ashrafuzzaman earned his highest academic degree, Doctor of Science (D.Sc.) in condensed matter physics from the University of Neuchatel, Switzerland in 2004.
God's Providence and Randomness in Nature
Author: Robert John Russell
Publisher: Templeton Foundation Press
ISBN: 1599475685
Category : Religion
Languages : en
Pages : 351
Book Description
In October 2014, a group of mathematicians, physicists, ecologists, philosophers, and theologians gathered at a special conference in Berkeley, California, to present the results of a two-year research program dubbed “Project SATURN.” This program explored many rich avenues of thought at the intersection of modern science and Christian theology. Chief among them is the possibility that specific processes might be so complex that they do not have sufficient physical causes. Known as “ontological indeterminism,” this idea has profound implications for theology. Specifically, it allows God to be thought of as acting providentially within nature without violating the laws and processes of nature. Such a momentous insight could influence how we understand free will, natural evil, suffering in nature, and the relation between divine providence and human evolution. The essays collected here discussed these topics and were initially presented at the 2014 conference. Part I establishes the scientific basis for conceptualizing specific processes in the universe as inherently random and possibly indeterministic. Part II discusses the philosophical and theological issues that spring from this understanding. Together they represent the cutting edge of thought in the increasingly productive dialogue between science and theology. Short for the “Scientific and Theological Understandings of Randomness in Nature,” Project SATURN was created by the Center for Theology and the Natural Sciences, a Program of the Graduate Theological Union, Berkeley. It was funded with a grant administered by Calvin College and provided by the John Templeton Foundation.
Publisher: Templeton Foundation Press
ISBN: 1599475685
Category : Religion
Languages : en
Pages : 351
Book Description
In October 2014, a group of mathematicians, physicists, ecologists, philosophers, and theologians gathered at a special conference in Berkeley, California, to present the results of a two-year research program dubbed “Project SATURN.” This program explored many rich avenues of thought at the intersection of modern science and Christian theology. Chief among them is the possibility that specific processes might be so complex that they do not have sufficient physical causes. Known as “ontological indeterminism,” this idea has profound implications for theology. Specifically, it allows God to be thought of as acting providentially within nature without violating the laws and processes of nature. Such a momentous insight could influence how we understand free will, natural evil, suffering in nature, and the relation between divine providence and human evolution. The essays collected here discussed these topics and were initially presented at the 2014 conference. Part I establishes the scientific basis for conceptualizing specific processes in the universe as inherently random and possibly indeterministic. Part II discusses the philosophical and theological issues that spring from this understanding. Together they represent the cutting edge of thought in the increasingly productive dialogue between science and theology. Short for the “Scientific and Theological Understandings of Randomness in Nature,” Project SATURN was created by the Center for Theology and the Natural Sciences, a Program of the Graduate Theological Union, Berkeley. It was funded with a grant administered by Calvin College and provided by the John Templeton Foundation.
Microbial Communication
Author: Sarangam Majumdar
Publisher: Springer Nature
ISBN: 9811574170
Category : Science
Languages : en
Pages : 182
Book Description
This book introduces the concept of bacterial communication systems from a mathematical modeling point of view. It sheds light on the research undertaken in the last three decades, and the mathematical models that have been proposed to understand the underlying mechanism of such systems. These communication systems are related to quorum sensing mechanisms and quorum sensing regulated processes such as biofilm formation, gene expression, bioluminescence, swarming and virulence. The book further describes the phenomenon of noise, and discusses how noise plays a crucial role in gene expression and the quorum sensing circuit operationusing a set of tools like frequency domain analysis, power spectral density, stochastic simulation and the whitening effect. It also explores various aspects of synthetic biology (related to bacterial communication), such as genetic toggle switch, bistable gene regulatory networks, transcriptional repressor systems, pattern formation, synthetic cooperation, predator-prey synthetic systems, dynamical quorum sensing, synchronized quorum of genetic clocks, role of noise in synthetic biology, the Turing test and stochastic Turing test.
Publisher: Springer Nature
ISBN: 9811574170
Category : Science
Languages : en
Pages : 182
Book Description
This book introduces the concept of bacterial communication systems from a mathematical modeling point of view. It sheds light on the research undertaken in the last three decades, and the mathematical models that have been proposed to understand the underlying mechanism of such systems. These communication systems are related to quorum sensing mechanisms and quorum sensing regulated processes such as biofilm formation, gene expression, bioluminescence, swarming and virulence. The book further describes the phenomenon of noise, and discusses how noise plays a crucial role in gene expression and the quorum sensing circuit operationusing a set of tools like frequency domain analysis, power spectral density, stochastic simulation and the whitening effect. It also explores various aspects of synthetic biology (related to bacterial communication), such as genetic toggle switch, bistable gene regulatory networks, transcriptional repressor systems, pattern formation, synthetic cooperation, predator-prey synthetic systems, dynamical quorum sensing, synchronized quorum of genetic clocks, role of noise in synthetic biology, the Turing test and stochastic Turing test.
How Can Physics Underlie the Mind?
Author: George Ellis
Publisher: Springer
ISBN: 366249809X
Category : Science
Languages : en
Pages : 502
Book Description
Physics underlies all complexity, including our own existence: how is this possible? How can our own lives emerge from interactions of electrons, protons, and neutrons? This book considers the interaction of physical and non-physical causation in complex systems such as living beings, and in particular in the human brain, relating this to the emergence of higher levels of complexity with real causal powers. In particular it explores the idea of top-down causation, which is the key effect allowing the emergence of true complexity and also enables the causal efficacy of non-physical entities, including the value of money, social conventions, and ethical choices.
Publisher: Springer
ISBN: 366249809X
Category : Science
Languages : en
Pages : 502
Book Description
Physics underlies all complexity, including our own existence: how is this possible? How can our own lives emerge from interactions of electrons, protons, and neutrons? This book considers the interaction of physical and non-physical causation in complex systems such as living beings, and in particular in the human brain, relating this to the emergence of higher levels of complexity with real causal powers. In particular it explores the idea of top-down causation, which is the key effect allowing the emergence of true complexity and also enables the causal efficacy of non-physical entities, including the value of money, social conventions, and ethical choices.