Author: Robert R. Boyd
Publisher: CRC Press
ISBN: 1351837869
Category : Technology & Engineering
Languages : en
Pages : 295
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Node List Tolerance Analysis
Author: Robert R. Boyd
Publisher: CRC Press
ISBN: 1351837869
Category : Technology & Engineering
Languages : en
Pages : 295
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Publisher: CRC Press
ISBN: 1351837869
Category : Technology & Engineering
Languages : en
Pages : 295
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Node List Tolerance Analysis
Author: Robert R. Boyd
Publisher: CRC Press
ISBN: 9780849370281
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Publisher: CRC Press
ISBN: 9780849370281
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Node List Tolerance Analysis
Author: Robert R. Boyd
Publisher: CRC Press
ISBN: 1420006290
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Publisher: CRC Press
ISBN: 1420006290
Category : Technology & Engineering
Languages : en
Pages : 347
Book Description
Developed at UC Berkeley more than two decades ago, SPICE software is the tool of choice for performing nominal analysis for electronic circuits. However, attempts to use SPICE for worst-case analysis (WCA) reveal several shortcomings, including: a 400-sample limit for Monte Carlo Analysis (MCA); lack of Rot-Sum-Square (RSS) analysis, asymmetric component tolerances, Fast MCA, or AC sensitivity capability; no single-run method of tolerancing inputs; and no predefined beta (skewed) or bimodal (gapped) distributions for MCA. While several commercial versions of SPICE may have corrected some of these limitations, they still remain rather expensive. Based on extensive experience in WCA, Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad presents software methods that overcome the many limitations of SPICE WCA using less expensive tools. The author demonstrates correct and incorrect methods of extreme value analysis, demonstrates the necessity of tolerancing multiple inputs, and provides output histograms for unusual inputs. He also shows how to detect non-monotonic components, which cause severe errors in all WCA methods except MCA. The book also includes demonstrations of tolerance analysis of three-phase AC circuits. Node List Tolerance Analysis: Enhancing SPICE Capabilities with Mathcad requires no circuit analysis mathematics, supplying original methods of nominal circuit analysis using node lists. It is ideal for performing effective analyses while adhering to a budget.
Acoustics: Sound Fields and Transducers
Author: Tim Mellow
Publisher: Academic Press
ISBN: 0123914868
Category : Science
Languages : en
Pages : 721
Book Description
Acoustics: Sound Fields and Transducers is a thoroughly updated version of Leo Beranek's classic 1954 book that retains and expands on the original's detailed acoustical fundamentals while adding practical formulas and simulation methods. Serving both as a text for students in engineering departments and as a reference for practicing engineers, this book focuses on electroacoustics, analyzing the behavior of transducers with the aid of electro-mechano-acoustical circuits. Assuming knowledge of electrical circuit theory, it starts by guiding readers through the basics of sound fields, the laws governing sound generation, radiation, and propagation, and general terminology. It then moves on to examine: - Microphones (electrostatic and electromagnetic), electrodynamic loudspeakers, earphones, and horns - Loudspeaker enclosures, baffles, and waveguides - Miniature applications (e.g., MEMS in I-Pods and cellphones) - Sound in enclosures of all sizes, such as school rooms, offices, auditoriums, and living rooms Numerical examples and summary charts are given throughout the text to make the material easily applicable to practical design. It is a valuable resource for experimenters, acoustical consultants, and to those who anticipate being engineering designers of audio equipment. - An update for the digital age of Leo Beranek's classic 1954 book Acoustics - Provides detailed acoustic fundamentals, enabling better understanding of complex design parameters, measurement methods, and data - Extensive appendices cover frequency-response shapes for loudspeakers, mathematical formulas, and conversion factors
Publisher: Academic Press
ISBN: 0123914868
Category : Science
Languages : en
Pages : 721
Book Description
Acoustics: Sound Fields and Transducers is a thoroughly updated version of Leo Beranek's classic 1954 book that retains and expands on the original's detailed acoustical fundamentals while adding practical formulas and simulation methods. Serving both as a text for students in engineering departments and as a reference for practicing engineers, this book focuses on electroacoustics, analyzing the behavior of transducers with the aid of electro-mechano-acoustical circuits. Assuming knowledge of electrical circuit theory, it starts by guiding readers through the basics of sound fields, the laws governing sound generation, radiation, and propagation, and general terminology. It then moves on to examine: - Microphones (electrostatic and electromagnetic), electrodynamic loudspeakers, earphones, and horns - Loudspeaker enclosures, baffles, and waveguides - Miniature applications (e.g., MEMS in I-Pods and cellphones) - Sound in enclosures of all sizes, such as school rooms, offices, auditoriums, and living rooms Numerical examples and summary charts are given throughout the text to make the material easily applicable to practical design. It is a valuable resource for experimenters, acoustical consultants, and to those who anticipate being engineering designers of audio equipment. - An update for the digital age of Leo Beranek's classic 1954 book Acoustics - Provides detailed acoustic fundamentals, enabling better understanding of complex design parameters, measurement methods, and data - Extensive appendices cover frequency-response shapes for loudspeakers, mathematical formulas, and conversion factors
Network Science
Author: Carlos Andre Reis Pinheiro
Publisher: John Wiley & Sons
ISBN: 1119898935
Category : Computers
Languages : en
Pages : 356
Book Description
Network Science Network Science offers comprehensive insight on network analysis and network optimization algorithms, with simple step-by-step guides and examples throughout, and a thorough introduction and history of network science, explaining the key concepts and the type of data needed for network analysis, ensuring a smooth learning experience for readers. It also includes a detailed introduction to multiple network optimization algorithms, including linear assignment, network flow and routing problems. The text is comprised of five chapters, focusing on subgraphs, network analysis, network optimization, and includes a list of case studies, those of which include influence factors in telecommunications, fraud detection in taxpayers, identifying the viral effect in purchasing, finding optimal routes considering public transportation systems, among many others. This insightful book shows how to apply algorithms to solve complex problems in real-life scenarios and shows the math behind these algorithms, enabling readers to learn how to develop them and scrutinize the results. Written by a highly qualified author with significant experience in the field, Network Science also includes information on: Sub-networks, covering connected components, bi-connected components, community detection, k-core decomposition, reach network, projection, nodes similarity and pattern matching Network centrality measures, covering degree, influence, clustering coefficient, closeness, betweenness, eigenvector, PageRank, hub and authority Network optimization, covering clique, cycle, linear assignment, minimum-cost network flow, maximum network flow problem, minimum cut, minimum spanning tree, path, shortest path, transitive closure, traveling salesman problem, vehicle routing problem and topological sort With in-depth and authoritative coverage of the subject and many case studies to convey concepts clearly, Network Science is a helpful training resource for professional and industry workers in, telecommunications, insurance, retail, banking, healthcare, public sector, among others, plus as a supplementary reading for an introductory Network Science course for undergraduate students.
Publisher: John Wiley & Sons
ISBN: 1119898935
Category : Computers
Languages : en
Pages : 356
Book Description
Network Science Network Science offers comprehensive insight on network analysis and network optimization algorithms, with simple step-by-step guides and examples throughout, and a thorough introduction and history of network science, explaining the key concepts and the type of data needed for network analysis, ensuring a smooth learning experience for readers. It also includes a detailed introduction to multiple network optimization algorithms, including linear assignment, network flow and routing problems. The text is comprised of five chapters, focusing on subgraphs, network analysis, network optimization, and includes a list of case studies, those of which include influence factors in telecommunications, fraud detection in taxpayers, identifying the viral effect in purchasing, finding optimal routes considering public transportation systems, among many others. This insightful book shows how to apply algorithms to solve complex problems in real-life scenarios and shows the math behind these algorithms, enabling readers to learn how to develop them and scrutinize the results. Written by a highly qualified author with significant experience in the field, Network Science also includes information on: Sub-networks, covering connected components, bi-connected components, community detection, k-core decomposition, reach network, projection, nodes similarity and pattern matching Network centrality measures, covering degree, influence, clustering coefficient, closeness, betweenness, eigenvector, PageRank, hub and authority Network optimization, covering clique, cycle, linear assignment, minimum-cost network flow, maximum network flow problem, minimum cut, minimum spanning tree, path, shortest path, transitive closure, traveling salesman problem, vehicle routing problem and topological sort With in-depth and authoritative coverage of the subject and many case studies to convey concepts clearly, Network Science is a helpful training resource for professional and industry workers in, telecommunications, insurance, retail, banking, healthcare, public sector, among others, plus as a supplementary reading for an introductory Network Science course for undergraduate students.
International Conference on Innovative Computing and Communications
Author: Ashish Khanna
Publisher: Springer Nature
ISBN: 9811503249
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
This book gathers high-quality research papers presented at the Second International Conference on Innovative Computing and Communication (ICICC 2019), which was held at the VSB - Technical University of Ostrava, Czech Republic, on 21–22 March 2019. Highlighting innovative papers by scientists, scholars, students, and industry experts in the fields of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research, and the translation of applied research into real-world applications.
Publisher: Springer Nature
ISBN: 9811503249
Category : Technology & Engineering
Languages : en
Pages : 599
Book Description
This book gathers high-quality research papers presented at the Second International Conference on Innovative Computing and Communication (ICICC 2019), which was held at the VSB - Technical University of Ostrava, Czech Republic, on 21–22 March 2019. Highlighting innovative papers by scientists, scholars, students, and industry experts in the fields of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research, and the translation of applied research into real-world applications.
Next-Generation Cyber-Physical Microgrid Systems
Author: O.V. Gnana Swathika
Publisher: Elsevier
ISBN: 0443221863
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
Next-Generation Cyber-Physical Microgrid Systems: A Practical Guide to Communication Technologies and Resilience presents the opportunities and challenges of using communication network technology to integrate distributed generation systems into microgrids. Working their way through case studies and theoretical strategies, the global range of authors analyze the particular needs of different system structures, including DC, AC-DC and hybrid microgrids, island-bound or grid-connected systems, and case studies in wind power and photovoltaic systems. Risks arising from the communication networks are addressed in detail, with strategies covered including modelling, cyber-physical security set-ups, applications of blockchain, demand-response analyses, and the impact and mitigation of cyber-attacks. Power-electronics interfaces for the integration of these technologies are demonstrated and explained. With a wealth of real-world, practical advice for the implementation and protection of these communication strategies, Next-Generation Cyber-Physical Microgrid Systems will be a useful resource for researchers and industry professionals developing the sustainable energy systems of the future. - Provides a practical reference for resilience in the cyber-physical microgrid with distributed and renewable integration - Summarizes the opportunities and challenges arising from the implementation of communication technologies - Includes simulations, models, case studies, and test codes to maximize practical application for students and professionals
Publisher: Elsevier
ISBN: 0443221863
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
Next-Generation Cyber-Physical Microgrid Systems: A Practical Guide to Communication Technologies and Resilience presents the opportunities and challenges of using communication network technology to integrate distributed generation systems into microgrids. Working their way through case studies and theoretical strategies, the global range of authors analyze the particular needs of different system structures, including DC, AC-DC and hybrid microgrids, island-bound or grid-connected systems, and case studies in wind power and photovoltaic systems. Risks arising from the communication networks are addressed in detail, with strategies covered including modelling, cyber-physical security set-ups, applications of blockchain, demand-response analyses, and the impact and mitigation of cyber-attacks. Power-electronics interfaces for the integration of these technologies are demonstrated and explained. With a wealth of real-world, practical advice for the implementation and protection of these communication strategies, Next-Generation Cyber-Physical Microgrid Systems will be a useful resource for researchers and industry professionals developing the sustainable energy systems of the future. - Provides a practical reference for resilience in the cyber-physical microgrid with distributed and renewable integration - Summarizes the opportunities and challenges arising from the implementation of communication technologies - Includes simulations, models, case studies, and test codes to maximize practical application for students and professionals
Optimization Algorithms for Networks and Graphs
Author: James Evans
Publisher: CRC Press
ISBN: 1351426680
Category : Mathematics
Languages : en
Pages : 481
Book Description
A revised and expanded advanced-undergraduate/graduate text (first ed., 1978) about optimization algorithms for problems that can be formulated on graphs and networks. This edition provides many new applications and algorithms while maintaining the classic foundations on which contemporary algorithm
Publisher: CRC Press
ISBN: 1351426680
Category : Mathematics
Languages : en
Pages : 481
Book Description
A revised and expanded advanced-undergraduate/graduate text (first ed., 1978) about optimization algorithms for problems that can be formulated on graphs and networks. This edition provides many new applications and algorithms while maintaining the classic foundations on which contemporary algorithm
Comp Euro
Author:
Publisher:
ISBN:
Category : Computer engineering
Languages : en
Pages : 928
Book Description
Publisher:
ISBN:
Category : Computer engineering
Languages : en
Pages : 928
Book Description
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
Author:
Publisher: SIAM
ISBN: 9780898715385
Category : Mathematics
Languages : en
Pages : 896
Book Description
From the January 2003 symposium come just over 100 papers addressing a range of topics related to discrete algorithms. Examples of topics covered include packing Steiner trees, counting inversions in lists, directed scale-free graphs, quantum property testing, and improved results for directed multicut. The papers were not formally refereed, but attempts were made to verify major results. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com)
Publisher: SIAM
ISBN: 9780898715385
Category : Mathematics
Languages : en
Pages : 896
Book Description
From the January 2003 symposium come just over 100 papers addressing a range of topics related to discrete algorithms. Examples of topics covered include packing Steiner trees, counting inversions in lists, directed scale-free graphs, quantum property testing, and improved results for directed multicut. The papers were not formally refereed, but attempts were made to verify major results. Annotation (c)2003 Book News, Inc., Portland, OR (booknews.com)