NMR Applications in Biopolymers

NMR Applications in Biopolymers PDF Author: John W. Finley
Publisher: Springer Science & Business Media
ISBN: 146845868X
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
Elucidating the structures of biopolymers as they exist in nature has long been a goal of biochemists and biologists. Understanding how these substances interact with themselves, other solutes, and solvents can provide useful insights into many areas of biochemistry, agriculture, food science and medicine. Knowledge of the structure of a protein or complex carbohydrate in its native form provides guidelines for the chemical or genetic modifications often desired to optimize these compounds to specific needs and applications. For example, in the pharmaceutical industry, structure-function relationships involving biopolymers are studied rou tinely as a means to design new drugs and improve their efficacies. The tools to conduct structure investigations of biopolymers at the molecular level are limited in number. Historically X-ray crystallography has been the most attractive method to conduct studies of this type. How ever, X-ray methods can only be applied to highly ordered, crystalline materials, thus obviating studies of solution dynamics that are often critical to attaining a global understanding of biopolymer behavior. In recent years, nuclear magnetic resonance (NMR) spectroscopy has evolved to become a powerful tool to probe the structures of biopolymers in solution and in the solid state. NMR provides a means to study the dynamics of polymers in solution, and to examine the effects of solute, solvent and' other factors~n polymer behavior. With the development of 2D and 3D forms of NMR spectroscopy, it is now possible to assess the solution conforma tions of small proteins, oligonucleotides and oligosaccharides.

NMR Applications in Biopolymers

NMR Applications in Biopolymers PDF Author: John W. Finley
Publisher: Springer Science & Business Media
ISBN: 146845868X
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
Elucidating the structures of biopolymers as they exist in nature has long been a goal of biochemists and biologists. Understanding how these substances interact with themselves, other solutes, and solvents can provide useful insights into many areas of biochemistry, agriculture, food science and medicine. Knowledge of the structure of a protein or complex carbohydrate in its native form provides guidelines for the chemical or genetic modifications often desired to optimize these compounds to specific needs and applications. For example, in the pharmaceutical industry, structure-function relationships involving biopolymers are studied rou tinely as a means to design new drugs and improve their efficacies. The tools to conduct structure investigations of biopolymers at the molecular level are limited in number. Historically X-ray crystallography has been the most attractive method to conduct studies of this type. How ever, X-ray methods can only be applied to highly ordered, crystalline materials, thus obviating studies of solution dynamics that are often critical to attaining a global understanding of biopolymer behavior. In recent years, nuclear magnetic resonance (NMR) spectroscopy has evolved to become a powerful tool to probe the structures of biopolymers in solution and in the solid state. NMR provides a means to study the dynamics of polymers in solution, and to examine the effects of solute, solvent and' other factors~n polymer behavior. With the development of 2D and 3D forms of NMR spectroscopy, it is now possible to assess the solution conforma tions of small proteins, oligonucleotides and oligosaccharides.

Solid State NMR Spectroscopy for Biopolymers

Solid State NMR Spectroscopy for Biopolymers PDF Author: Hazime Saitô
Publisher: Springer Science & Business Media
ISBN: 1402043031
Category : Science
Languages : en
Pages : 455

Get Book Here

Book Description
‘‘Biopolymers’’ are polymeric materials of biological origin, including globular, membrane, and fibrous proteins, polypeptides, nucleic acids, po- saccharides, lipids, etc. and their assembly, although preference to respe- ive subjects may be different among readers who are more interested in their biological significance or industrial and/or medical applications. Nevert- less, characterizing or revealing their secondary structure and dynamics may be an equally very important and useful issue for both kinds of readers. Special interest in revealing the 3D structure of globular proteins, nucleic acids, and peptides was aroused in relation to the currently active Structural Biology. X-ray crystallography and multidimensional solution NMR sp- troscopy have proved to be the standard and indispensable means for this purpose. There remain, however, several limitations to this end, if one intends to expand its scope further. This is because these approaches are not always straightforward to characterize fibrous or membrane proteins owing to extreme difficulty in crystallization in the former, and insufficient spectral resolution due to sparing solubility or increased effective molecular mass in the presence of surrounding lipid bilayers in the latter.

Solid State NMR Studies of Biopolymers

Solid State NMR Studies of Biopolymers PDF Author: Anne E. McDermott
Publisher: John Wiley & Sons
ISBN: 1118588886
Category : Science
Languages : en
Pages : 596

Get Book Here

Book Description
The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI. The field of solid state NMR of biological samples [ssNMR] has blossomed in the past 5-10 years, and a cohesive overview of the technology is needed for new practitioners in industry and academia. This title provides an overview of Solid State NMR methods for studying structure dynamics and ligand-binding in biopolymers, and offers an overview of RF pulse sequences for various applications, including not only a systematic catalog but also a discussion of theoretical tools for analysis of pulse sequences. Practical examples of biochemical applications are included, along with a detailed discussion of the many aspects of sample preparation and handling that make spectroscopy on solid proteins successful. About EMR Handbooks / eMagRes Handbooks The Encyclopedia of Magnetic Resonance (up to 2012) and eMagRes (from 2013 onward) publish a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks / eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of articles from eMagRes. In consultation with the eMagRes Editorial Board, the EMR Handbooks / eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this Handbook and the complete content of eMagRes at your fingertips! Visit: www.wileyonlinelibrary.com/ref/eMagRes View other eMagRes publications here

NMR Methods for Characterization of Synthetic and Natural Polymers

NMR Methods for Characterization of Synthetic and Natural Polymers PDF Author: Rongchun Zhang
Publisher: Royal Society of Chemistry
ISBN: 178801863X
Category : Science
Languages : en
Pages : 590

Get Book Here

Book Description
Since the introduction of FT-NMR spectroscopy around five decades ago, NMR has achieved significant advances in hardware and methodologies, accompanied with the enhancement of spectral resolution and signal sensitivity. Rapid developments in the polymers field mean that accurate and quantitative characterization of polymer structures and dynamics is the keystone for precisely regulating and controlling the physical and chemical properties of the polymer. This book specifically focuses on NMR investigation of complex polymers for the polymer community as well as NMR spectroscopists, and will push the development of both fields. It covers the latest advances, for example high field DNP and ultrafast MAS methodologies, and show how these novel NMR methods characterize various synthetic and natural polymers.

Applications of Polymer Spectroscopy

Applications of Polymer Spectroscopy PDF Author: Edward Grant Brame
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
Applications of Polymer Spectroscopy focuses on the use of spectroscopy for the determination of polymer structure. This book is divided into three general areas of spectroscopy: nuclear magnetic resonance (NMR) spectroscopy, infrared spectroscopy, and mass spectroscopy. This text is comprised of 16 chapters and begins with a discussion on the applications of NMR spectroscopy, including carbon-13 NMR, proton NMR, and fluorine-19 NMR. The next section considers infrared spectroscopy, with special consideration to the Fourier transform method and the dynamic method of handling the examination of ...

NMR in Structural Biology

NMR in Structural Biology PDF Author: Kurt Wthrich
Publisher: World Scientific
ISBN: 9789810223847
Category : Science
Languages : en
Pages : 770

Get Book Here

Book Description
The volume presents a survey of the research by Kurt Wthrich and his associates during the period 1965 to 1994. A selection of reprints of original papers on the use of NMR spectroscopy in structural biology is supplemented with an introduction, which outlines the foundations and the historical development of the use of NMR spectroscopy for the determination of three-dimensional structures of biological macromolecules in solution. The original papers are presented in groups highlighting protein structure determination by NMR, studies of dynamic properties and hydration of biological macromolecules, and practical applications of the NMR methodology in fields such as enzymology, transcriptional regulation, immunosuppression and protein folding.

Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy

Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy PDF Author: Jeffrey C. Hoch
Publisher: Springer Science & Business Media
ISBN: 147579794X
Category : Medical
Languages : en
Pages : 457

Get Book Here

Book Description
This volume is the scientific chronicle of the NATO Advanced Research Workshop on Computational Aspects of the Study of Biological Macro molecules by Nuclear Magnetic Resonance Spectroscopy, which was held June 3-8, 1990 at Il Ciocco, near Barga, Italy. The use of computers in the study of biological macromolecules by NMR spectroscopy is ubiquitous. The applications are diverse, including data col lection, reduction, and analysis. Furthermore, their use is rapidly evolv ing, driven by the development of new experimental methods in NMR and molecular biology and by phenomenal increases in computational perfor mance available at reasonable cost. Computers no longer merely facilitate, but are now absolutely essential in the study of biological macromolecules by NMR, due to the size and complexity of the data sets that are obtained from modern experiments. The Workshop, and this proceedings volume, provide a snapshot of the uses of computers in the NMR of biomolecules. While by no means exhaustive, the picture that emerges illustrates both the· importance and the diversity of their application.

Handbook of Biopolymer-Based Materials

Handbook of Biopolymer-Based Materials PDF Author: Sabu Thomas
Publisher: John Wiley & Sons
ISBN: 3527652477
Category : Technology & Engineering
Languages : en
Pages : 880

Get Book Here

Book Description
This first systematic scientific reference in the area of micro- and nanostructured biopolymer systems discusses in two volumes the morphology, structure, dynamics, properties and applications of all important biopolymers, as well as their blends, composites, interpenetrating networks and gels. Selected leading researchers from industry, academia, government and private research institutions around the globe comprehensively review recent accomplishments in the field. They examine the current state of the art, new challenges, and opportunities, discussing all the synthetic routes to the generation of both micro- and nano-morphologies, as well as the synthesis, characterization and application of porous biopolymers. An outstanding resource for anyone involved in the fi eld of eco-friendly biomaterials for advanced technologies.

Models of Biopolymers By Ring-Opening Polymerization

Models of Biopolymers By Ring-Opening Polymerization PDF Author: Stanislaw Penczek
Publisher: CRC Press
ISBN: 1351091611
Category : Science
Languages : en
Pages : 638

Get Book Here

Book Description
There are a number of methods used to synthetically prepare biopolymers, their models, and bioanalogous polymers. This work approaches the syntheses of the three major groups of biopolymers existing in nature - polypeptides, polysaccharides, and nucleic and teichoic acids - by ring-opening polymerization. Until now, this method has never been reviewed uniformly for these three groups. The majority of models prepared by ring-opening polymerization can not reach the complexity of the actual biological molecules. However, a better understanding of these biopolymers will aid in the use of such molecules in several fields of application in research and other high technologies, where they mimic functions of related biopolymers in living organisms.

Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers PDF Author: Chengchen Guo
Publisher:
ISBN:
Category : Biopolymers
Languages : en
Pages : 227

Get Book Here

Book Description
Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix confirmation. In addition, the conformations of the Ala, Ser, and Tyr residues in silk fibroin of B. mori were investigated and it indicates that the Ala, Ser, and Tyr residues are all present in disordered structures in silk I (before spinning), while show different conformations in silk II (after spinning). Specifically, in silk II, the Ala and Tyr residues are present in both disordered structures and beta-sheet structures, and the Ser residues are present primarily in beta-sheet structures.