Next-Generation Machine Learning with Spark

Next-Generation Machine Learning with Spark PDF Author: Butch Quinto
Publisher: Apress
ISBN: 1484256697
Category : Computers
Languages : en
Pages : 367

Get Book Here

Book Description
Access real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications. The past decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry. Next-Generation Machine Learning with Spark provides a gentle introduction to Spark and Spark MLlib and advances to more powerful, third-party machine learning algorithms and libraries beyond what is available in the standard Spark MLlib library. By the end of this book, you will be able to apply your knowledge to real-world use cases through dozens of practical examples and insightful explanations. What You Will Learn Be introduced to machine learning, Spark, and Spark MLlib 2.4.xAchieve lightning-fast gradient boosting on Spark with the XGBoost4J-Spark and LightGBM librariesDetect anomalies with the Isolation Forest algorithm for SparkUse the Spark NLP and Stanford CoreNLP libraries that support multiple languagesOptimize your ML workload with the Alluxio in-memory data accelerator for SparkUse GraphX and GraphFrames for Graph AnalysisPerform image recognition using convolutional neural networksUtilize the Keras framework and distributed deep learning libraries with Spark Who This Book Is For Data scientists and machine learning engineers who want to take their knowledge to the next level and use Spark and more powerful, next-generation algorithms and libraries beyond what is available in the standard Spark MLlib library; also serves as a primer for aspiring data scientists and engineers who need an introduction to machine learning, Spark, and Spark MLlib.

Next-Generation Machine Learning with Spark

Next-Generation Machine Learning with Spark PDF Author: Butch Quinto
Publisher: Apress
ISBN: 1484256697
Category : Computers
Languages : en
Pages : 367

Get Book Here

Book Description
Access real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications. The past decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry. Next-Generation Machine Learning with Spark provides a gentle introduction to Spark and Spark MLlib and advances to more powerful, third-party machine learning algorithms and libraries beyond what is available in the standard Spark MLlib library. By the end of this book, you will be able to apply your knowledge to real-world use cases through dozens of practical examples and insightful explanations. What You Will Learn Be introduced to machine learning, Spark, and Spark MLlib 2.4.xAchieve lightning-fast gradient boosting on Spark with the XGBoost4J-Spark and LightGBM librariesDetect anomalies with the Isolation Forest algorithm for SparkUse the Spark NLP and Stanford CoreNLP libraries that support multiple languagesOptimize your ML workload with the Alluxio in-memory data accelerator for SparkUse GraphX and GraphFrames for Graph AnalysisPerform image recognition using convolutional neural networksUtilize the Keras framework and distributed deep learning libraries with Spark Who This Book Is For Data scientists and machine learning engineers who want to take their knowledge to the next level and use Spark and more powerful, next-generation algorithms and libraries beyond what is available in the standard Spark MLlib library; also serves as a primer for aspiring data scientists and engineers who need an introduction to machine learning, Spark, and Spark MLlib.

Frank Kane's Taming Big Data with Apache Spark and Python

Frank Kane's Taming Big Data with Apache Spark and Python PDF Author: Frank Kane
Publisher: Packt Publishing Ltd
ISBN: 1787288307
Category : Computers
Languages : en
Pages : 289

Get Book Here

Book Description
Frank Kane's hands-on Spark training course, based on his bestselling Taming Big Data with Apache Spark and Python video, now available in a book. Understand and analyze large data sets using Spark on a single system or on a cluster. About This Book Understand how Spark can be distributed across computing clusters Develop and run Spark jobs efficiently using Python A hands-on tutorial by Frank Kane with over 15 real-world examples teaching you Big Data processing with Spark Who This Book Is For If you are a data scientist or data analyst who wants to learn Big Data processing using Apache Spark and Python, this book is for you. If you have some programming experience in Python, and want to learn how to process large amounts of data using Apache Spark, Frank Kane's Taming Big Data with Apache Spark and Python will also help you. What You Will Learn Find out how you can identify Big Data problems as Spark problems Install and run Apache Spark on your computer or on a cluster Analyze large data sets across many CPUs using Spark's Resilient Distributed Datasets Implement machine learning on Spark using the MLlib library Process continuous streams of data in real time using the Spark streaming module Perform complex network analysis using Spark's GraphX library Use Amazon's Elastic MapReduce service to run your Spark jobs on a cluster In Detail Frank Kane's Taming Big Data with Apache Spark and Python is your companion to learning Apache Spark in a hands-on manner. Frank will start you off by teaching you how to set up Spark on a single system or on a cluster, and you'll soon move on to analyzing large data sets using Spark RDD, and developing and running effective Spark jobs quickly using Python. Apache Spark has emerged as the next big thing in the Big Data domain – quickly rising from an ascending technology to an established superstar in just a matter of years. Spark allows you to quickly extract actionable insights from large amounts of data, on a real-time basis, making it an essential tool in many modern businesses. Frank has packed this book with over 15 interactive, fun-filled examples relevant to the real world, and he will empower you to understand the Spark ecosystem and implement production-grade real-time Spark projects with ease. Style and approach Frank Kane's Taming Big Data with Apache Spark and Python is a hands-on tutorial with over 15 real-world examples carefully explained by Frank in a step-by-step manner. The examples vary in complexity, and you can move through them at your own pace.

Internet of Things, Smart Spaces, and Next Generation Networks and Systems

Internet of Things, Smart Spaces, and Next Generation Networks and Systems PDF Author: Olga Galinina
Publisher: Springer
ISBN: 3319463012
Category : Computers
Languages : en
Pages : 783

Get Book Here

Book Description
This book constitutes the joint refereed proceedings of the 16th International Conference on Next Generation Wired/Wireless Advanced Networks and Systems, NEW2AN 2016, and the 9th Conference on Internet of Things and Smart Spaces, ruSMART 2016, held in St. Petersburg, Russia, in September 2016. The 69 revised full papers were carefully reviewed and selected from 204 submissions. The 12 papers selected for ruSMART are organized in topical sections on new generation of smart services; smart services serving telecommunication networks; role of context for smart services; and smart services in automotive industry. The 57 papers from NEW2AN deal with the following topics: cooperative communications; wireless networks; wireless sensor networks; security issues; IoT and industrial IoT; NoC and positioning; ITS; network issues; SDN; satellite communications; signals and circuits; advanced materials and their properties; and economics and business.

Spark: The Definitive Guide

Spark: The Definitive Guide PDF Author: Bill Chambers
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594

Get Book Here

Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

Internet of Things and Big Data Analytics Toward Next-Generation Intelligence

Internet of Things and Big Data Analytics Toward Next-Generation Intelligence PDF Author: Nilanjan Dey
Publisher: Springer
ISBN: 331960435X
Category : Technology & Engineering
Languages : en
Pages : 545

Get Book Here

Book Description
This book highlights state-of-the-art research on big data and the Internet of Things (IoT), along with related areas to ensure efficient and Internet-compatible IoT systems. It not only discusses big data security and privacy challenges, but also energy-efficient approaches to improving virtual machine placement in cloud computing environments. Big data and the Internet of Things (IoT) are ultimately two sides of the same coin, yet extracting, analyzing and managing IoT data poses a serious challenge. Accordingly, proper analytics infrastructures/platforms should be used to analyze IoT data. Information technology (IT) allows people to upload, retrieve, store and collect information, which ultimately forms big data. The use of big data analytics has grown tremendously in just the past few years. At the same time, the IoT has entered the public consciousness, sparking people’s imaginations as to what a fully connected world can offer. Further, the book discusses the analysis of real-time big data to derive actionable intelligence in enterprise applications in several domains, such as in industry and agriculture. It explores possible automated solutions in daily life, including structures for smart cities and automated home systems based on IoT technology, as well as health care systems that manage large amounts of data (big data) to improve clinical decisions. The book addresses the security and privacy of the IoT and big data technologies, while also revealing the impact of IoT technologies on several scenarios in smart cities design. Intended as a comprehensive introduction, it offers in-depth analysis and provides scientists, engineers and professionals the latest techniques, frameworks and strategies used in IoT and big data technologies.

Learning Spark

Learning Spark PDF Author: Jules S. Damji
Publisher: O'Reilly Media
ISBN: 1492050016
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow

Agents and Multi-Agent Systems: Technologies and Applications 2021

Agents and Multi-Agent Systems: Technologies and Applications 2021 PDF Author: G. Jezic
Publisher: Springer Nature
ISBN: 9811629943
Category : Technology & Engineering
Languages : en
Pages : 509

Get Book Here

Book Description
This book highlights new trends and challenges in research on agents and the new digital and knowledge economy. It includes papers on business process management, agent-based modeling and simulation, and anthropic-oriented computing that were originally presented at the 15th International KES Conference on Agents and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2021), being held as a Virtual Conference in June 14–16, 2021. The respective papers cover topics such as software agents, multi-agent systems, agent modeling, mobile and cloud computing, big data analysis, business intelligence, artificial intelligence, social systems, computer embedded systems, and nature-inspired manufacturing, all of which contribute to the modern digital economy.

Machine Learning with Spark - Second Edition

Machine Learning with Spark - Second Edition PDF Author: Rajdeep Dua
Publisher:
ISBN: 9781785889936
Category :
Languages : en
Pages : 572

Get Book Here

Book Description
Develop intelligent machine learning systems with SparkAbout This Book*Get to the grips with the latest version of Apache Spark*Utilize Spark's machine learning library to implement predictive analytics*Leverage Spark's powerful tools to load, analyze, clean, and transform your dataWho This Book Is ForIf you have a basic knowledge of machine learning and want to implement various machine-learning concepts in the context of Spark ML, this book is for you. You should be well versed with the Scala and Python languages.What You Will Learn*Get hands-on with the latest version of Spark ML*Create your first Spark program with Scala and Python*Set up and configure a development environment for Spark on your own computer, as well as on Amazon EC2*Access public machine learning datasets and use Spark to load, process, clean, and transform data*Use Spark's machine learning library to implement programs by utilizing well-known machine learning models*Deal with large-scale text data, including feature extraction and using text data as input to your machine learning models*Write Spark functions to evaluate the performance of your machine learning modelsIn DetailSpark ML is the machine learning module of Spark. It uses in-memory RDDs to process machine learning models faster for clustering, classification, and regression.This book will teach you about popular machine learning algorithms and their implementation. You will learn how various machine learning concepts are implemented in the context of Spark ML. You will start by installing Spark in a single and multinode cluster. Next you'll see how to execute Scala and Python based programs for Spark ML. Then we will take a few datasets and go deeper into clustering, classification, and regression. Toward the end, we will also cover text processing using Spark ML.Once you have learned the concepts, they can be applied to implement algorithms in either green-field implementations or to migrate existing systems to this new platform. You can migrate from Mahout or Scikit to use Spark ML.

Learning Spark

Learning Spark PDF Author: Jules S. Damji
Publisher: "O'Reilly Media, Inc."
ISBN: 1492049999
Category : Computers
Languages : en
Pages : 390

Get Book Here

Book Description
Data is bigger, arrives faster, and comes in a variety of formatsâ??and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ??ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow

Learning Spark

Learning Spark PDF Author: Holden Karau
Publisher: "O'Reilly Media, Inc."
ISBN: 1449359051
Category : Computers
Languages : en
Pages : 289

Get Book Here

Book Description
Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables