Author: Barry P. Martins
Publisher: Nova Publishers
ISBN: 9781594549854
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.
New Topics in Superconductivity Research
Author: Barry P. Martins
Publisher: Nova Publishers
ISBN: 9781594549854
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.
Publisher: Nova Publishers
ISBN: 9781594549854
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.
Recent Developments in Superconductivity Research
Author: Barry P. Martins
Publisher: Nova Publishers
ISBN: 9781600214622
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.
Publisher: Nova Publishers
ISBN: 9781600214622
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.
New Research on Superconductivity
Author: Barry P. Martins
Publisher: Nova Publishers
ISBN: 9781594541971
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.
Publisher: Nova Publishers
ISBN: 9781594541971
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.
Advances in Superconductivity XII
Author: T. Yamashita
Publisher: Springer Science & Business Media
ISBN: 4431668772
Category : Technology & Engineering
Languages : en
Pages : 1162
Book Description
The 12th International Symposium on Superconductivity was held in Morioka, Japan, October 17-19, 1999. Convened annually since 1988, the symposium covers the whole field of superconductivity from fundamental physics and chemistry to a variety of applications. At the 12th Symposium, a mini-symposium focusing on the two-dimensionality of high-temperature superconductors, or the c-axis transport, and a session on vortex physics were organized. There were also many reports on the recent developments of YBCO-based coated conductors both in the United States and in Japan, AC losses of wires and tapes, developments of bulk materials with strong flux pinning, the recent progress in thin film and junction technologies, and the demonstration of various electronics applications using SQUIDs, microwave devices, and single-flux-quantum (SFQ) digital devices. This volume is a valuable resource for all those working in the field of superconductivity.
Publisher: Springer Science & Business Media
ISBN: 4431668772
Category : Technology & Engineering
Languages : en
Pages : 1162
Book Description
The 12th International Symposium on Superconductivity was held in Morioka, Japan, October 17-19, 1999. Convened annually since 1988, the symposium covers the whole field of superconductivity from fundamental physics and chemistry to a variety of applications. At the 12th Symposium, a mini-symposium focusing on the two-dimensionality of high-temperature superconductors, or the c-axis transport, and a session on vortex physics were organized. There were also many reports on the recent developments of YBCO-based coated conductors both in the United States and in Japan, AC losses of wires and tapes, developments of bulk materials with strong flux pinning, the recent progress in thin film and junction technologies, and the demonstration of various electronics applications using SQUIDs, microwave devices, and single-flux-quantum (SFQ) digital devices. This volume is a valuable resource for all those working in the field of superconductivity.
Advances in Superconductivity VI
Author: Toshizo Fujita
Publisher: Springer Science & Business Media
ISBN: 443168266X
Category : Science
Languages : en
Pages : 1359
Book Description
More than seven years have passed since the dramatic breakthrough in the critical temperature for superconductors. During this period, a host of new materials have been discovered, and efforts have been stepped up in a variety of domains including device and systems applications, commercialization, and basic research on the properties of superconductive materials. Recent progress in areas such as bulk single crystal production, long-scale wire and tape produc tion, flywheel and bearing applications, and electronic device applications for thin films indicate that science and technology have been working hand in hand in this field, as has been the case in the research and development of semi conductors. This interdisciplinary "resonance" will be certain to lead to further outstanding advances in the years to come. It goes without saying that worldwide information exchange is the key to accelerating progress in superconductivity science and technology. As in previous years, the ISS '93 served as a venue where visions of future develop ments were shared in addition to presentations and extensive discussions on the most up-to-date research results. I hope that the Proceedings contained in this volume will be consulted not only as a summary of the current "state of the art" in high-Tc superconductivity but also as a stimulating source of ideas regarding future applications of superconductivity research.
Publisher: Springer Science & Business Media
ISBN: 443168266X
Category : Science
Languages : en
Pages : 1359
Book Description
More than seven years have passed since the dramatic breakthrough in the critical temperature for superconductors. During this period, a host of new materials have been discovered, and efforts have been stepped up in a variety of domains including device and systems applications, commercialization, and basic research on the properties of superconductive materials. Recent progress in areas such as bulk single crystal production, long-scale wire and tape produc tion, flywheel and bearing applications, and electronic device applications for thin films indicate that science and technology have been working hand in hand in this field, as has been the case in the research and development of semi conductors. This interdisciplinary "resonance" will be certain to lead to further outstanding advances in the years to come. It goes without saying that worldwide information exchange is the key to accelerating progress in superconductivity science and technology. As in previous years, the ISS '93 served as a venue where visions of future develop ments were shared in addition to presentations and extensive discussions on the most up-to-date research results. I hope that the Proceedings contained in this volume will be consulted not only as a summary of the current "state of the art" in high-Tc superconductivity but also as a stimulating source of ideas regarding future applications of superconductivity research.
Case Studies in Superconducting Magnets
Author: Yukikazu Iwasa
Publisher: Springer Science & Business Media
ISBN: 0387098003
Category : Technology & Engineering
Languages : en
Pages : 717
Book Description
The 2nd edition emphasizes two areas not emphasized in the 1st edition: 1) high-temperature superconductor (HTS) magnets; 2) NMR (nuclear magnetic resonance) and MRI (magnetic resonance imaging) magnets. Despite nearly 40 years of R and D on superconducting magnet technology, most areas, notably fusion and electric power applications, are still in the R and D stage. One exception is in the area of NMR and MRI. NMR magnets are very popular among chemists, biologists, genome scientists, and most of all, by drug manufacturers for drug discovery and development. MRI and NMR magnets have become the most successful application of superconducting magnet technology and this trend should continue. The 2nd edition will have new materials never treated formally in any other book of this kind. As with the 1st, most subjects will be presented through problem format to educate and train the designer.
Publisher: Springer Science & Business Media
ISBN: 0387098003
Category : Technology & Engineering
Languages : en
Pages : 717
Book Description
The 2nd edition emphasizes two areas not emphasized in the 1st edition: 1) high-temperature superconductor (HTS) magnets; 2) NMR (nuclear magnetic resonance) and MRI (magnetic resonance imaging) magnets. Despite nearly 40 years of R and D on superconducting magnet technology, most areas, notably fusion and electric power applications, are still in the R and D stage. One exception is in the area of NMR and MRI. NMR magnets are very popular among chemists, biologists, genome scientists, and most of all, by drug manufacturers for drug discovery and development. MRI and NMR magnets have become the most successful application of superconducting magnet technology and this trend should continue. The 2nd edition will have new materials never treated formally in any other book of this kind. As with the 1st, most subjects will be presented through problem format to educate and train the designer.
NIST Research Reports
Author:
Publisher:
ISBN:
Category : High technology
Languages : en
Pages : 36
Book Description
Publisher:
ISBN:
Category : High technology
Languages : en
Pages : 36
Book Description
High Temperature Superconductivity 2
Author: Anant V. Narlikar
Publisher: Springer Science & Business Media
ISBN: 3662077647
Category : Technology & Engineering
Languages : en
Pages : 585
Book Description
In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.
Publisher: Springer Science & Business Media
ISBN: 3662077647
Category : Technology & Engineering
Languages : en
Pages : 585
Book Description
In contrast to research on the fundamental mechanisms of High-Temperature Superconductivity, in recent years we have seen enormous developments in the fabrication and application of High-Tc-superconductors. The two volumes of High Temperature Superconductivity provide a survey of the state of the technology and engineering applications of these materials. They comprise extended original research papers and technical review articles written by physicists, chemists, materials scientists and engineers, all of them noted experts in their fields. The interdisciplinary and strictly application-oriented coverage should benefit graduate students and academic researchers in the mentioned areas as well as industrial experts. Volume 1 "Materials" focuses on major technical advancements in High-Tc materials processing for applications. Volume 2 "Engineering Applications" covers numerous application areas where High-Tc superconductors are making tremendous impact.
Advances in Superconductivity III
Author: Koji Kajimura
Publisher: Springer Science & Business Media
ISBN: 4431681418
Category : Technology & Engineering
Languages : en
Pages : 1312
Book Description
Since the discovery of high temperature superconductors, many new materials have been invented. In the last year, several new materials were also discovered, but their critical temperatures are still below lOOK. Precise physical and chemical work has made tremendous progress in the theoretical and experimental study of physical properties and carrier state characterizations. The de Haas van Alphen effect measurement showed the existence of a Fermi surface in YBCO. Flux dynamics is a well-known new problem in which flux creep and irreversibility line features are especially important for a fundamental understanding of the critical current and flux pinning. Flux pinning centers which are intentionally added using non-superconducting precipitates, neutrons, and protons, etc. increase critical currents to practical levels. The analysis of electric and magnetic properties are expected to reveal the pinning mechanism and also to further application development. As for wires and bulks, many melt-like sintering techniques have improved the material performance of critical current densities. A new seeding Quench-Melt Growth technique enlarged crystal size and increased the repulsion force. These melting processes, in conjunction with a mechanical strength improvement have been effectively introduced into wire fabrication in order to realize kilometer range wires and will put the oxide wires to practical use. Where thin film is con cerned, when many fabrication methods had been developed using the assistance effect of activated oxygen such as ozone and oxygen radicals, a high current 2 density of 106A/cm at 77K was reported.
Publisher: Springer Science & Business Media
ISBN: 4431681418
Category : Technology & Engineering
Languages : en
Pages : 1312
Book Description
Since the discovery of high temperature superconductors, many new materials have been invented. In the last year, several new materials were also discovered, but their critical temperatures are still below lOOK. Precise physical and chemical work has made tremendous progress in the theoretical and experimental study of physical properties and carrier state characterizations. The de Haas van Alphen effect measurement showed the existence of a Fermi surface in YBCO. Flux dynamics is a well-known new problem in which flux creep and irreversibility line features are especially important for a fundamental understanding of the critical current and flux pinning. Flux pinning centers which are intentionally added using non-superconducting precipitates, neutrons, and protons, etc. increase critical currents to practical levels. The analysis of electric and magnetic properties are expected to reveal the pinning mechanism and also to further application development. As for wires and bulks, many melt-like sintering techniques have improved the material performance of critical current densities. A new seeding Quench-Melt Growth technique enlarged crystal size and increased the repulsion force. These melting processes, in conjunction with a mechanical strength improvement have been effectively introduced into wire fabrication in order to realize kilometer range wires and will put the oxide wires to practical use. Where thin film is con cerned, when many fabrication methods had been developed using the assistance effect of activated oxygen such as ozone and oxygen radicals, a high current 2 density of 106A/cm at 77K was reported.
High-Temperature Superconductors: Materials, Properties, and Applications
Author: Rainer Wesche
Publisher: Springer Science & Business Media
ISBN: 1461550750
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
The discovery by J. G. Bednorz and K. A. Mtllier in 1986 that the superconducting state can exist in oxides at temperatures above 30 K stimulated research in the field of superconductivity and opened up a new field of research. Within a few years a large number of cuprate superconductors with transition temperatures well above the boiling point of liquid nitrogen have been found. The possibility of using liquid nitrogen as coolant re-stimulated interest in power applications of supercon ductivity. In this book an overview of the known high-Te superconductors and their physical properties is presented. Aspects related to conductor fabrication and high-current applications are emphasised. The material should be suitable for use in graduate level courses on superconductivity. Researchers in the field may profit from the large number of tables and references describing its status at the end of 1997. An introduction to high-To superconductivity must be based on the fundamental physical principles of normal-state electrical conductivity and the well-known characteristics of conventional superconductors. In Chapter 2 this background is provided. Crystal structures, anisotropic properties and general trends of the critical temperatures of the cuprate superconductors are described in Chapters 3 and 4. The processing of superconductor powders addressed in Chapter 5 affects considerably the current-carrying capacity of high-T. wires. In Chapter 6 several fabrication techniques for superconducting wires are described. In addition, the factors limiting the transport critical currents ofhigh-Te wires are discussed.
Publisher: Springer Science & Business Media
ISBN: 1461550750
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
The discovery by J. G. Bednorz and K. A. Mtllier in 1986 that the superconducting state can exist in oxides at temperatures above 30 K stimulated research in the field of superconductivity and opened up a new field of research. Within a few years a large number of cuprate superconductors with transition temperatures well above the boiling point of liquid nitrogen have been found. The possibility of using liquid nitrogen as coolant re-stimulated interest in power applications of supercon ductivity. In this book an overview of the known high-Te superconductors and their physical properties is presented. Aspects related to conductor fabrication and high-current applications are emphasised. The material should be suitable for use in graduate level courses on superconductivity. Researchers in the field may profit from the large number of tables and references describing its status at the end of 1997. An introduction to high-To superconductivity must be based on the fundamental physical principles of normal-state electrical conductivity and the well-known characteristics of conventional superconductors. In Chapter 2 this background is provided. Crystal structures, anisotropic properties and general trends of the critical temperatures of the cuprate superconductors are described in Chapters 3 and 4. The processing of superconductor powders addressed in Chapter 5 affects considerably the current-carrying capacity of high-T. wires. In Chapter 6 several fabrication techniques for superconducting wires are described. In addition, the factors limiting the transport critical currents ofhigh-Te wires are discussed.