New Research on Superconductivity

New Research on Superconductivity PDF Author: Barry P. Martins
Publisher: Nova Publishers
ISBN: 9781594541971
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.

New Research on Superconductivity

New Research on Superconductivity PDF Author: Barry P. Martins
Publisher: Nova Publishers
ISBN: 9781594541971
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book Here

Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.

New Topics in Superconductivity Research

New Topics in Superconductivity Research PDF Author: Barry P. Martins
Publisher: Nova Publishers
ISBN: 9781594549854
Category : Technology & Engineering
Languages : en
Pages : 334

Get Book Here

Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.

Recent Advances in Superconductivity Research

Recent Advances in Superconductivity Research PDF Author: Christopher B. Taylor
Publisher: Nova Science Publishers
ISBN: 9781626184060
Category : Superconductivity
Languages : en
Pages : 0

Get Book Here

Book Description
The authors of this book present current research in the study of superconductivity. Topics discussed in this compilation include the effects of non-magnetic defects in hole doped cuprates; deep cryogenic refrigeration by photons based on the phonon deficit effect in superconductors; superconductivity driven by an anti-polar electric phase in high temperature superconducting materials; superconductive graphite intercalation compounds; a superconducting magnetic field concentrator with nanodimensional branches and slits; magnetic mechanisms of pairing in a strongly correlated electron system of copper oxides; two non-linear mechanisms of correlations between copper carriers in superconductivity and their microscopical descriptions; three dimensionality of the critical state and variational methods for magnetically anisotropic superconductors; theory of multi-band superconductivity; conserving approximation for the self-energy of the t-U-V-J model beyond the Hartree-Fock approximation; and superconductivity as a consequence of an ordering of zero-point oscillations in electron gas.

New Research on YBCO Superconductors

New Research on YBCO Superconductors PDF Author: David M. Friedman
Publisher: Nova Publishers
ISBN: 9781604560848
Category : Science
Languages : en
Pages : 306

Get Book Here

Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense world-wide research, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such 'strongly correlated' solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. This Publication presents new research on yttrium barium copper oxide superconductors, often abbreviated YBCO, which is a chemical compound with the formula YBa2Cu3O7. This material, a famous 'high-temperature superconductor', achieved prominence because it was the first material to superconduct above the boiling point of nitrogen. All materials developed before YBCO became superconducting only at temperatures near the boiling points of liquid helium or liquid hydrogen (Tb = 20.1 K). The significance of the discovery of YBCO is the breakthrough in the refrigerant used to cool the material to below the critical temperature.

New Frontiers in Superconductivity Research

New Frontiers in Superconductivity Research PDF Author: Barry P. Martins
Publisher: Nova Publishers
ISBN: 9781594548505
Category : Technology & Engineering
Languages : en
Pages : 236

Get Book Here

Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic.

The New Superconductors

The New Superconductors PDF Author: Frank J. Owens
Publisher: Springer Science & Business Media
ISBN: 030645453X
Category : Science
Languages : en
Pages : 207

Get Book Here

Book Description
In The New Superconductors, Frank J. Owens and Charles P. Poole, Jr., offer a descriptive, non-mathematical presentation of the latest superconductors and their properties for the non-specialist. Highlights of this up-to-date text include chapters on superfluidity, the latest copper oxide types, fullerenes, and prospects for future research. The book also features many examples of commercial applications; an extensive glossary that defines superconductivity terms in clear language; and a supplementary list of readings for the interested lay reader.

New Research on Superconductivity and Magnetism

New Research on Superconductivity and Magnetism PDF Author: Lannie K. Tran
Publisher: Nova Publishers
ISBN: 9781600215407
Category : Science
Languages : en
Pages : 234

Get Book Here

Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.

Superconductivity

Superconductivity PDF Author: Kristian Fossheim
Publisher: John Wiley & Sons
ISBN: 047002643X
Category : Science
Languages : en
Pages : 442

Get Book Here

Book Description
Superconductivity: Physics and Applications brings together major developments that have occurred within the field over the past twenty years. Taking a truly modern approach to the subject the authors provide an interesting and accessible introduction. Brings a fresh approach to the physics of superconductivity based both on the well established and convergent picture for most low-Tc superconductors, provided by the BCS theory at the microscopic level, and London and Ginzburg-Landau theories at the phenomenological level, as well as on experiences gathered in high-Tc research in recent years. Includes end of chapter problems and numerous relevant examples Features brief interviews with key researchers in the field A prominent feature of the book is the use of SI units throughout, in contrast to many of the current textbooks on the subject which tend to use cgs units and are considered to be outdated

Recent Developments in Superconductivity Research

Recent Developments in Superconductivity Research PDF Author: Barry P. Martins
Publisher: Nova Publishers
ISBN: 9781600214622
Category : Technology & Engineering
Languages : en
Pages : 366

Get Book Here

Book Description
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.

New Challenges in Superconductivity: Experimental Advances and Emerging Theories

New Challenges in Superconductivity: Experimental Advances and Emerging Theories PDF Author: J. Ashkenazi
Publisher: Springer Science & Business Media
ISBN: 1402030851
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
This volume contains the proceedings of the 2004 University of Miami Workshop on Unconventional Superconductivity. The workshop was the fourth in a series of successful meetings on High-T Superconductivity and C related topics, which took place at the James L. Knight Physics Building on the University of Miami campus in Coral Gables, Florida, in January 1991, 1995, 1999, and 2004. The workshop consisted of two consecutive events: 1. NATO Advanced Research Workshop (ARW) on New Challenges in Superconductivity: Experimental Advances and Emerging Theories, held on January 11-14, 2004; 2. Symposium on Emerging Mechanisms for High Temperature Superconductivity (SEMHTS), held on January 15-16, 2004. It is hard to write a balanced preface to a volume like this one, yet at least we try to offer the reader a taste of what was happening in this workshop. There were close to a hundred scientists from around the world, albeit fewer Russians than we had originally hoped for. Nevertheless, the workshop was very lively and we trust that this is demonstrated in this volume. The workshop included high-quality presentations on state of the art works, yet a key issue, discussed by many, was how homogeneous the cuprates are. STM data, as well as other reports, showed that the cuprate superconductors (SC’s) studied were inhomogeneous, especially in the underdoped regime; while experiments, like ARPES and magnetoresistance have established the existence of a Fermi Surface (FS), at least above some doping level, in the cuprates.