Author: Snehashish Chakraverty
Publisher: Academic Press
ISBN: 0128221682
Category : Science
Languages : en
Pages : 280
Book Description
In general, every problem of science and engineering is governed by mathematical models. There is often a need to model, solve and interpret the problems one encounters in the world of practical problems. Models of practical application problems usually need to be handled by efficient computational models. New Paradigms in Computational Modeling and Its Applications deals with recent developments in mathematical methods, including theoretical models as well as applied science and engineering. The book focuses on subjects that can benefit from mathematical methods with concepts of simulation, waves, dynamics, uncertainty, machine intelligence, and applied mathematics. The authors bring together leading-edge research on mathematics combining various fields of science and engineering. This perspective acknowledges the inherent characteristic of current research on mathematics operating in parallel over different subject fields. New Paradigms in Computational Modeling and Its Applications meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of mathematics on the other. As such, the book contains 13 chapters covering various aspects of computational modeling from theoretical to application problems. The first six chapters address various problems of structural and fluid dynamics. The next four chapters include solving problems where the governing parameters are uncertain regarding fuzzy, interval, and affine. The final three chapters will be devoted to the use of machine intelligence in artificial neural networks. - Presents a self-contained and up to date review of modelling real life scientific and engineering application problems - Introduces new concepts of various computing techniques to handle different engineering and science problems - Demonstrates the efficiency and power of the various algorithms and models in a simple and easy to follow style, including numerous examples to illustrate concepts and algorithms
New Paradigms in Computational Modeling and Its Applications
Author: Snehashish Chakraverty
Publisher: Academic Press
ISBN: 0128221682
Category : Science
Languages : en
Pages : 280
Book Description
In general, every problem of science and engineering is governed by mathematical models. There is often a need to model, solve and interpret the problems one encounters in the world of practical problems. Models of practical application problems usually need to be handled by efficient computational models. New Paradigms in Computational Modeling and Its Applications deals with recent developments in mathematical methods, including theoretical models as well as applied science and engineering. The book focuses on subjects that can benefit from mathematical methods with concepts of simulation, waves, dynamics, uncertainty, machine intelligence, and applied mathematics. The authors bring together leading-edge research on mathematics combining various fields of science and engineering. This perspective acknowledges the inherent characteristic of current research on mathematics operating in parallel over different subject fields. New Paradigms in Computational Modeling and Its Applications meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of mathematics on the other. As such, the book contains 13 chapters covering various aspects of computational modeling from theoretical to application problems. The first six chapters address various problems of structural and fluid dynamics. The next four chapters include solving problems where the governing parameters are uncertain regarding fuzzy, interval, and affine. The final three chapters will be devoted to the use of machine intelligence in artificial neural networks. - Presents a self-contained and up to date review of modelling real life scientific and engineering application problems - Introduces new concepts of various computing techniques to handle different engineering and science problems - Demonstrates the efficiency and power of the various algorithms and models in a simple and easy to follow style, including numerous examples to illustrate concepts and algorithms
Publisher: Academic Press
ISBN: 0128221682
Category : Science
Languages : en
Pages : 280
Book Description
In general, every problem of science and engineering is governed by mathematical models. There is often a need to model, solve and interpret the problems one encounters in the world of practical problems. Models of practical application problems usually need to be handled by efficient computational models. New Paradigms in Computational Modeling and Its Applications deals with recent developments in mathematical methods, including theoretical models as well as applied science and engineering. The book focuses on subjects that can benefit from mathematical methods with concepts of simulation, waves, dynamics, uncertainty, machine intelligence, and applied mathematics. The authors bring together leading-edge research on mathematics combining various fields of science and engineering. This perspective acknowledges the inherent characteristic of current research on mathematics operating in parallel over different subject fields. New Paradigms in Computational Modeling and Its Applications meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of mathematics on the other. As such, the book contains 13 chapters covering various aspects of computational modeling from theoretical to application problems. The first six chapters address various problems of structural and fluid dynamics. The next four chapters include solving problems where the governing parameters are uncertain regarding fuzzy, interval, and affine. The final three chapters will be devoted to the use of machine intelligence in artificial neural networks. - Presents a self-contained and up to date review of modelling real life scientific and engineering application problems - Introduces new concepts of various computing techniques to handle different engineering and science problems - Demonstrates the efficiency and power of the various algorithms and models in a simple and easy to follow style, including numerous examples to illustrate concepts and algorithms
Computational Intelligence Paradigms
Author: S.. PANEERSELVAM SUMATHI (SUREKHA.)
Publisher: CRC Press
ISBN: 9780367384555
Category :
Languages : en
Pages : 851
Book Description
Offering a wide range of programming examples implemented in MATLAB(R), Computational Intelligence Paradigms: Theory and Applications Using MATLAB(R) presents theoretical concepts and a general framework for computational intelligence (CI) approaches, including artificial neural networks, fuzzy systems, evolutionary computation, genetic algorithms and programming, and swarm intelligence. It covers numerous intelligent computing methodologies and algorithms used in CI research. The book first focuses on neural networks, including common artificial neural networks; neural networks based on data classification, data association, and data conceptualization; and real-world applications of neural networks. It then discusses fuzzy sets, fuzzy rules, applications of fuzzy systems, and different types of fused neuro-fuzzy systems, before providing MATLAB illustrations of ANFIS, classification and regression trees, fuzzy c-means clustering algorithms, fuzzy ART map, and Takagi-Sugeno inference systems. The authors also describe the history, advantages, and disadvantages of evolutionary computation and include solved MATLAB programs to illustrate the implementation of evolutionary computation in various problems. After exploring the operators and parameters of genetic algorithms, they cover the steps and MATLAB routines of genetic programming. The final chapter introduces swarm intelligence and its applications, particle swarm optimization, and ant colony optimization. Full of worked examples and end-of-chapter questions, this comprehensive book explains how to use MATLAB to implement CI techniques for the solution of biological problems. It will help readers with their work on evolution dynamics, self-organization, natural and artificial morphogenesis, emergent collective behaviors, swarm intelligence, evolutionary strategies, genetic programming, and the evolution of social behaviors.
Publisher: CRC Press
ISBN: 9780367384555
Category :
Languages : en
Pages : 851
Book Description
Offering a wide range of programming examples implemented in MATLAB(R), Computational Intelligence Paradigms: Theory and Applications Using MATLAB(R) presents theoretical concepts and a general framework for computational intelligence (CI) approaches, including artificial neural networks, fuzzy systems, evolutionary computation, genetic algorithms and programming, and swarm intelligence. It covers numerous intelligent computing methodologies and algorithms used in CI research. The book first focuses on neural networks, including common artificial neural networks; neural networks based on data classification, data association, and data conceptualization; and real-world applications of neural networks. It then discusses fuzzy sets, fuzzy rules, applications of fuzzy systems, and different types of fused neuro-fuzzy systems, before providing MATLAB illustrations of ANFIS, classification and regression trees, fuzzy c-means clustering algorithms, fuzzy ART map, and Takagi-Sugeno inference systems. The authors also describe the history, advantages, and disadvantages of evolutionary computation and include solved MATLAB programs to illustrate the implementation of evolutionary computation in various problems. After exploring the operators and parameters of genetic algorithms, they cover the steps and MATLAB routines of genetic programming. The final chapter introduces swarm intelligence and its applications, particle swarm optimization, and ant colony optimization. Full of worked examples and end-of-chapter questions, this comprehensive book explains how to use MATLAB to implement CI techniques for the solution of biological problems. It will help readers with their work on evolution dynamics, self-organization, natural and artificial morphogenesis, emergent collective behaviors, swarm intelligence, evolutionary strategies, genetic programming, and the evolution of social behaviors.
Computational Modeling of Cognition and Behavior
Author: Simon Farrell
Publisher: Cambridge University Press
ISBN: 110710999X
Category : Psychology
Languages : en
Pages : 485
Book Description
This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.
Publisher: Cambridge University Press
ISBN: 110710999X
Category : Psychology
Languages : en
Pages : 485
Book Description
This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.
Computational Modeling
Author: Charles S. Taber
Publisher: SAGE
ISBN: 9780803972704
Category : Computers
Languages : en
Pages : 108
Book Description
In this introduction to computational modelling the authors provide a concise description of computational methods, including dynamic simulation, knowledge-based models and machine learning, as a single broad class of research tools.
Publisher: SAGE
ISBN: 9780803972704
Category : Computers
Languages : en
Pages : 108
Book Description
In this introduction to computational modelling the authors provide a concise description of computational methods, including dynamic simulation, knowledge-based models and machine learning, as a single broad class of research tools.
Computational Pharmaceutics
Author: Defang Ouyang
Publisher: John Wiley & Sons
ISBN: 1118573994
Category : Science
Languages : en
Pages : 350
Book Description
Molecular modeling techniques have been widely used in drug discovery fields for rational drug design and compound screening. Now these techniques are used to model or mimic the behavior of molecules, and help us study formulation at the molecular level. Computational pharmaceutics enables us to understand the mechanism of drug delivery, and to develop new drug delivery systems. The book discusses the modeling of different drug delivery systems, including cyclodextrins, solid dispersions, polymorphism prediction, dendrimer-based delivery systems, surfactant-based micelle, polymeric drug delivery systems, liposome, protein/peptide formulations, non-viral gene delivery systems, drug-protein binding, silica nanoparticles, carbon nanotube-based drug delivery systems, diamond nanoparticles and layered double hydroxides (LDHs) drug delivery systems. Although there are a number of existing books about rational drug design with molecular modeling techniques, these techniques still look mysterious and daunting for pharmaceutical scientists. This book fills the gap between pharmaceutics and molecular modeling, and presents a systematic and overall introduction to computational pharmaceutics. It covers all introductory, advanced and specialist levels. It provides a totally different perspective to pharmaceutical scientists, and will greatly facilitate the development of pharmaceutics. It also helps computational chemists to look for the important questions in the drug delivery field. This book is included in the Advances in Pharmaceutical Technology book series.
Publisher: John Wiley & Sons
ISBN: 1118573994
Category : Science
Languages : en
Pages : 350
Book Description
Molecular modeling techniques have been widely used in drug discovery fields for rational drug design and compound screening. Now these techniques are used to model or mimic the behavior of molecules, and help us study formulation at the molecular level. Computational pharmaceutics enables us to understand the mechanism of drug delivery, and to develop new drug delivery systems. The book discusses the modeling of different drug delivery systems, including cyclodextrins, solid dispersions, polymorphism prediction, dendrimer-based delivery systems, surfactant-based micelle, polymeric drug delivery systems, liposome, protein/peptide formulations, non-viral gene delivery systems, drug-protein binding, silica nanoparticles, carbon nanotube-based drug delivery systems, diamond nanoparticles and layered double hydroxides (LDHs) drug delivery systems. Although there are a number of existing books about rational drug design with molecular modeling techniques, these techniques still look mysterious and daunting for pharmaceutical scientists. This book fills the gap between pharmaceutics and molecular modeling, and presents a systematic and overall introduction to computational pharmaceutics. It covers all introductory, advanced and specialist levels. It provides a totally different perspective to pharmaceutical scientists, and will greatly facilitate the development of pharmaceutics. It also helps computational chemists to look for the important questions in the drug delivery field. This book is included in the Advances in Pharmaceutical Technology book series.
Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems
Author: Yeliz Karaca
Publisher: Academic Press
ISBN: 0323886167
Category : Science
Languages : en
Pages : 352
Book Description
Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems addresses different uncertain processes inherent in the complex systems, attempting to provide global and robust optimized solutions distinctively through multifarious methods, technical analyses, modeling, optimization processes, numerical simulations, case studies as well as applications including theoretical aspects of complexity. Foregrounding Multi-chaos, Fractal and Multi-fractional in the era of Artificial Intelligence (AI), the edited book deals with multi- chaos, fractal, multifractional, fractional calculus, fractional operators, quantum, wavelet, entropy-based applications, artificial intelligence, mathematics-informed and data driven processes aside from the means of modelling, and simulations for the solution of multifaceted problems characterized by nonlinearity, non-regularity and self-similarity, frequently encountered in different complex systems. The fundamental interacting components underlying complexity, complexity thinking, processes and theory along with computational processes and technologies, with machine learning as the core component of AI demonstrate the enabling of complex data to augment some critical human skills. Appealing to an interdisciplinary network of scientists and researchers to disseminate the theory and application in medicine, neurology, mathematics, physics, biology, chemistry, information theory, engineering, computer science, social sciences and other far-reaching domains, the overarching aim is to empower out-of-the-box thinking through multifarious methods, directed towards paradoxical situations, uncertain processes, chaotic, transient and nonlinear dynamics of complex systems. - Constructs and presents a multifarious approach for critical decision-making processes embodying paradoxes and uncertainty. - Includes a combination of theory and applications with regard to multi-chaos, fractal and multi-fractional as well as AI of different complex systems and many-body systems. - Provides readers with a bridge between application of advanced computational mathematical methods and AI based on comprehensive analyses and broad theories.
Publisher: Academic Press
ISBN: 0323886167
Category : Science
Languages : en
Pages : 352
Book Description
Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems addresses different uncertain processes inherent in the complex systems, attempting to provide global and robust optimized solutions distinctively through multifarious methods, technical analyses, modeling, optimization processes, numerical simulations, case studies as well as applications including theoretical aspects of complexity. Foregrounding Multi-chaos, Fractal and Multi-fractional in the era of Artificial Intelligence (AI), the edited book deals with multi- chaos, fractal, multifractional, fractional calculus, fractional operators, quantum, wavelet, entropy-based applications, artificial intelligence, mathematics-informed and data driven processes aside from the means of modelling, and simulations for the solution of multifaceted problems characterized by nonlinearity, non-regularity and self-similarity, frequently encountered in different complex systems. The fundamental interacting components underlying complexity, complexity thinking, processes and theory along with computational processes and technologies, with machine learning as the core component of AI demonstrate the enabling of complex data to augment some critical human skills. Appealing to an interdisciplinary network of scientists and researchers to disseminate the theory and application in medicine, neurology, mathematics, physics, biology, chemistry, information theory, engineering, computer science, social sciences and other far-reaching domains, the overarching aim is to empower out-of-the-box thinking through multifarious methods, directed towards paradoxical situations, uncertain processes, chaotic, transient and nonlinear dynamics of complex systems. - Constructs and presents a multifarious approach for critical decision-making processes embodying paradoxes and uncertainty. - Includes a combination of theory and applications with regard to multi-chaos, fractal and multi-fractional as well as AI of different complex systems and many-body systems. - Provides readers with a bridge between application of advanced computational mathematical methods and AI based on comprehensive analyses and broad theories.
Mathematical Methods in Dynamical Systems
Author: S. Chakraverty
Publisher: CRC Press
ISBN: 1000833771
Category : Mathematics
Languages : en
Pages : 393
Book Description
The art of applying mathematics to real-world dynamical problems such as structural dynamics, fluid dynamics, wave dynamics, robot dynamics, etc. can be extremely challenging. Various aspects of mathematical modelling that may include deterministic or uncertain (fuzzy, interval, or stochastic) scenarios, along with integer or fractional order, are vital to understanding these dynamical systems. Mathematical Methods in Dynamical Systems offers problem-solving techniques and includes different analytical, semi-analytical, numerical, and machine intelligence methods for finding exact and/or approximate solutions of governing equations arising in dynamical systems. It provides a singular source of computationally efficient methods to investigate these systems and includes coverage of various industrial applications in a simple yet comprehensive way.
Publisher: CRC Press
ISBN: 1000833771
Category : Mathematics
Languages : en
Pages : 393
Book Description
The art of applying mathematics to real-world dynamical problems such as structural dynamics, fluid dynamics, wave dynamics, robot dynamics, etc. can be extremely challenging. Various aspects of mathematical modelling that may include deterministic or uncertain (fuzzy, interval, or stochastic) scenarios, along with integer or fractional order, are vital to understanding these dynamical systems. Mathematical Methods in Dynamical Systems offers problem-solving techniques and includes different analytical, semi-analytical, numerical, and machine intelligence methods for finding exact and/or approximate solutions of governing equations arising in dynamical systems. It provides a singular source of computationally efficient methods to investigate these systems and includes coverage of various industrial applications in a simple yet comprehensive way.
The Cambridge Handbook of Computational Psychology
Author: Ron Sun
Publisher: Cambridge University Press
ISBN: 0521674107
Category : Computers
Languages : en
Pages : 767
Book Description
A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.
Publisher: Cambridge University Press
ISBN: 0521674107
Category : Computers
Languages : en
Pages : 767
Book Description
A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.
Soft Computing in Interdisciplinary Sciences
Author: S. Chakraverty
Publisher: Springer Nature
ISBN: 9811647135
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
This book meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of soft computing on the other. Soft computing is the recent development about the computing methods which include fuzzy set theory/logic, evolutionary computation (EC), probabilistic reasoning, artificial neural networks, machine learning, expert systems, etc. Soft computing refers to a partnership of computational techniques in computer science, artificial intelligence, machine learning, and some other engineering disciplines, which attempt to study, model, and analyze complex problems from different interdisciplinary problems. This, as opposed to traditional computing, deals with approximate models and gives solutions to complex real-life problems. Unlike hard computing, soft computing is tolerant of imprecision, uncertainty, partial truth, and approximations. Interdisciplinary sciences include various challenging problems of science and engineering. Recent developments in soft computing are the bridge to handle different interdisciplinary science and engineering problems. In recent years, the correspondingly increased dialog between these disciplines has led to this new book. This is done, firstly, by encouraging the ways that soft computing may be applied in traditional areas, as well as point towards new and innovative areas of applications and secondly, by encouraging other scientific disciplines to engage in a dialog with the above computation algorithms outlining their problems to both access new methods as well as to suggest innovative developments within itself.
Publisher: Springer Nature
ISBN: 9811647135
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
This book meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of soft computing on the other. Soft computing is the recent development about the computing methods which include fuzzy set theory/logic, evolutionary computation (EC), probabilistic reasoning, artificial neural networks, machine learning, expert systems, etc. Soft computing refers to a partnership of computational techniques in computer science, artificial intelligence, machine learning, and some other engineering disciplines, which attempt to study, model, and analyze complex problems from different interdisciplinary problems. This, as opposed to traditional computing, deals with approximate models and gives solutions to complex real-life problems. Unlike hard computing, soft computing is tolerant of imprecision, uncertainty, partial truth, and approximations. Interdisciplinary sciences include various challenging problems of science and engineering. Recent developments in soft computing are the bridge to handle different interdisciplinary science and engineering problems. In recent years, the correspondingly increased dialog between these disciplines has led to this new book. This is done, firstly, by encouraging the ways that soft computing may be applied in traditional areas, as well as point towards new and innovative areas of applications and secondly, by encouraging other scientific disciplines to engage in a dialog with the above computation algorithms outlining their problems to both access new methods as well as to suggest innovative developments within itself.
Modeling and Simulation Fundamentals
Author: John A. Sokolowski
Publisher: John Wiley & Sons
ISBN: 0470590610
Category : Mathematics
Languages : en
Pages : 453
Book Description
An insightful presentation of the key concepts, paradigms, and applications of modeling and simulation Modeling and simulation has become an integral part of research and development across many fields of study, having evolved from a tool to a discipline in less than two decades. Modeling and Simulation Fundamentals offers a comprehensive and authoritative treatment of the topic and includes definitions, paradigms, and applications to equip readers with the skills needed to work successfully as developers and users of modeling and simulation. Featuring contributions written by leading experts in the field, the book's fluid presentation builds from topic to topic and provides the foundation and theoretical underpinnings of modeling and simulation. First, an introduction to the topic is presented, including related terminology, examples of model development, and various domains of modeling and simulation. Subsequent chapters develop the necessary mathematical background needed to understand modeling and simulation topics, model types, and the importance of visualization. In addition, Monte Carlo simulation, continuous simulation, and discrete event simulation are thoroughly discussed, all of which are significant to a complete understanding of modeling and simulation. The book also features chapters that outline sophisticated methodologies, verification and validation, and the importance of interoperability. A related FTP site features color representations of the book's numerous figures. Modeling and Simulation Fundamentals encompasses a comprehensive study of the discipline and is an excellent book for modeling and simulation courses at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of computational statistics, engineering, and computer science who use statistical modeling techniques.
Publisher: John Wiley & Sons
ISBN: 0470590610
Category : Mathematics
Languages : en
Pages : 453
Book Description
An insightful presentation of the key concepts, paradigms, and applications of modeling and simulation Modeling and simulation has become an integral part of research and development across many fields of study, having evolved from a tool to a discipline in less than two decades. Modeling and Simulation Fundamentals offers a comprehensive and authoritative treatment of the topic and includes definitions, paradigms, and applications to equip readers with the skills needed to work successfully as developers and users of modeling and simulation. Featuring contributions written by leading experts in the field, the book's fluid presentation builds from topic to topic and provides the foundation and theoretical underpinnings of modeling and simulation. First, an introduction to the topic is presented, including related terminology, examples of model development, and various domains of modeling and simulation. Subsequent chapters develop the necessary mathematical background needed to understand modeling and simulation topics, model types, and the importance of visualization. In addition, Monte Carlo simulation, continuous simulation, and discrete event simulation are thoroughly discussed, all of which are significant to a complete understanding of modeling and simulation. The book also features chapters that outline sophisticated methodologies, verification and validation, and the importance of interoperability. A related FTP site features color representations of the book's numerous figures. Modeling and Simulation Fundamentals encompasses a comprehensive study of the discipline and is an excellent book for modeling and simulation courses at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of computational statistics, engineering, and computer science who use statistical modeling techniques.