Numerical Algorithms

Numerical Algorithms PDF Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig

Numerical Algorithms

Numerical Algorithms PDF Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400

Get Book Here

Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig

Linear And Nonlinear Filtering For Scientists And Engineers

Linear And Nonlinear Filtering For Scientists And Engineers PDF Author: Nasir Uddin Ahmed
Publisher: World Scientific
ISBN: 9814495646
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
The book combines both rigor and intuition to derive most of the classical results of linear and nonlinear filtering and beyond. Many fundamental results recently discovered by the author are included. Furthermore, many results that have appeared in recent years in the literature are also presented. The most interesting feature of the book is that all the derivations of the linear filter equations given in Chapters 3-11, beginning from the classical Kalman filter presented in Chapters 3 and 5, are based on one basic principle which is fully rigorous but also very intuitive and easily understandable. The second most interesting feature is that the book provides a rigorous theoretical basis for the numerical solution of nonlinear filter equations illustrated by multidimensional examples. The book also provides a strong foundation for theoretical understanding of the subject based on the theory of stochastic differential equations.

Mathematical Theory of Optimization

Mathematical Theory of Optimization PDF Author: Ding-Zhu Du
Publisher: Springer Science & Business Media
ISBN: 1475757956
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
This book provides an introduction to the mathematical theory of optimization. It emphasizes the convergence theory of nonlinear optimization algorithms and applications of nonlinear optimization to combinatorial optimization. Mathematical Theory of Optimization includes recent developments in global convergence, the Powell conjecture, semidefinite programming, and relaxation techniques for designs of approximation solutions of combinatorial optimization problems.

Nonlinear Filters

Nonlinear Filters PDF Author: Sueo Sugimoto
Publisher: Ohmsha, Ltd.
ISBN: 4274805026
Category : Mathematics
Languages : en
Pages : 457

Get Book Here

Book Description
This book covers a broad range of filter theories, algorithms, and numerical examples. The representative linear and nonlinear filters such as the Kalman filter, the steady-state Kalman filter, the H infinity filter, the extended Kalman filter, the Gaussian sum filter, the statistically linearized Kalman filter, the unscented Kalman filter, the Gaussian filter, the cubature Kalman filter are first visited. Then, the non-Gaussian filters such as the ensemble Kalman filter and the particle filters based on the sequential Bayesian filter and the sequential importance resampling are described, together with their recent advances. Moreover, the information matrix in the nonlinear filtering, the nonlinear smoother based on the Markov Chain Monte Carlo, the continuous-discrete filters, factorized filters, and nonlinear filters based on stochastic approximation method are detailed. 1 Review of the Kalman Filter and Related Filters 2 Information Matrix in Nonlinear Filtering 3 Extended Kalman Filter and Gaussian Sum Filter 4 Statistically Linearized Kalman Filter 5 The Unscented Kalman Filter 6 General Gaussian Filters and Applications 7 The Ensemble Kalman Filter 8 Particle Filter 9 Nonlinear Smoother with Markov Chain Monte Carlo 10 Continuous-Discrete Filters 11 Factorized Filters 12 Nonlinear Filters Based on Stochastic Approximation Method

Nonlinear Digital Filters

Nonlinear Digital Filters PDF Author: W. K. Ling
Publisher: Academic Press
ISBN: 0080550010
Category : Technology & Engineering
Languages : en
Pages : 217

Get Book Here

Book Description
Nonlinear Digital Filters provides an easy to understand overview of nonlinear behavior in digital filters, showing how it can be utilized or avoided when operating nonlinear digital filters. It gives techniques for analyzing discrete-time systems with discontinuous linearity, enabling the analysis of other nonlinear discrete-time systems, such as sigma delta modulators, digital phase lock loops, and turbo coders. It uses new methods based on symbolic dynamics, enabling the engineer to easily operate reliable nonlinear digital filters. It gives practical, 'real-world' applications of nonlinear digital filters and contains many examples. The book is ideal for professional engineers working with signal processing applications, as well as advanced undergraduates and graduates conducting a nonlinear filter analysis project. Uses new methods based on symbolic dynamics, enabling the engineer more easily to operate reliable nonlinear digital filters Gives practical, "real-world" applications of nonlinear digital filter Includes many examples.

Large-Scale Nonlinear Optimization

Large-Scale Nonlinear Optimization PDF Author: Gianni Pillo
Publisher: Springer Science & Business Media
ISBN: 0387300651
Category : Mathematics
Languages : en
Pages : 297

Get Book Here

Book Description
This book reviews and discusses recent advances in the development of methods and algorithms for nonlinear optimization and its applications, focusing on the large-dimensional case, the current forefront of much research. Individual chapters, contributed by eminent authorities, provide an up-to-date overview of the field from different and complementary standpoints, including theoretical analysis, algorithmic development, implementation issues and applications.

Fundamentals of Stochastic Filtering

Fundamentals of Stochastic Filtering PDF Author: Alan Bain
Publisher: Springer Science & Business Media
ISBN: 0387768963
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.

Numerical Methods and Stochastics

Numerical Methods and Stochastics PDF Author: T. J. Lyons
Publisher: American Mathematical Soc.
ISBN: 0821819941
Category : Mathematics
Languages : en
Pages : 129

Get Book Here

Book Description
This volume represents the proceedings of the Workshop on Numerical Methods and Stochastics held at The Fields Institute in April 1999. The goal of the workshop was to identify emerging ideas in probability theory that influence future work in both probability and numerical computation. The book focuses on up-to-date results and gives novel approaches to computational problems based on cutting-edge techniques from the theory of probability and stochastic processes. Three papers discuss particle system approximations to solutions of the stochastic filtering problem. Two papers treat particle system equations. The paper on rough paths describes how to generate good approximations to stochastic integrals. An expository paper discusses a long-standing conjecture: the stochastic fast dynamo effect. A final paper gives an analysis of the error in binomial and trinomial approximations to solutions of the Black-Scholes stochastic differential equations. The book is intended for graduate students and research mathematicians interested in probability theory.

NBS Special Publication

NBS Special Publication PDF Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 398

Get Book Here

Book Description


Max-Plus Methods for Nonlinear Control and Estimation

Max-Plus Methods for Nonlinear Control and Estimation PDF Author: William M. McEneaney
Publisher: Springer Science & Business Media
ISBN: 0817644539
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
The central focus of this book is the control of continuous-time/continuous-space nonlinear systems. Using new techniques that employ the max-plus algebra, the author addresses several classes of nonlinear control problems, including nonlinear optimal control problems and nonlinear robust/H-infinity control and estimation problems. Several numerical techniques are employed, including a max-plus eigenvector approach and an approach that avoids the curse-of-dimensionality. The max-plus-based methods examined in this work belong to an entirely new class of numerical methods for the solution of nonlinear control problems and their associated Hamilton–Jacobi–Bellman (HJB) PDEs; these methods are not equivalent to either of the more commonly used finite element or characteristic approaches. Max-Plus Methods for Nonlinear Control and Estimation will be of interest to applied mathematicians, engineers, and graduate students interested in the control of nonlinear systems through the implementation of recently developed numerical methods.