Author: Lakhmi C. Jain
Publisher: Physica
ISBN: 3790818038
Category : Computers
Languages : en
Pages : 477
Book Description
Learning is a key issue in the analysis and design of all kinds of intelligent systems. In recent time many new paradigms of automated (machine) learning have been proposed in the literature. Soft computing, that has proved to be an effective and efficient tool in so many areas of science and technology, seems to offer new qualities in the realm of machine learning too. The purpose of this volume is to present some new learning paradigms that have been triggered, or at least strongly influenced by soft computing tools and techniques, mainly related to neural networks, fuzzy logic, rough sets, and evolutionary computations.
New Learning Paradigms in Soft Computing
Author: Lakhmi C. Jain
Publisher: Physica
ISBN: 3790818038
Category : Computers
Languages : en
Pages : 477
Book Description
Learning is a key issue in the analysis and design of all kinds of intelligent systems. In recent time many new paradigms of automated (machine) learning have been proposed in the literature. Soft computing, that has proved to be an effective and efficient tool in so many areas of science and technology, seems to offer new qualities in the realm of machine learning too. The purpose of this volume is to present some new learning paradigms that have been triggered, or at least strongly influenced by soft computing tools and techniques, mainly related to neural networks, fuzzy logic, rough sets, and evolutionary computations.
Publisher: Physica
ISBN: 3790818038
Category : Computers
Languages : en
Pages : 477
Book Description
Learning is a key issue in the analysis and design of all kinds of intelligent systems. In recent time many new paradigms of automated (machine) learning have been proposed in the literature. Soft computing, that has proved to be an effective and efficient tool in so many areas of science and technology, seems to offer new qualities in the realm of machine learning too. The purpose of this volume is to present some new learning paradigms that have been triggered, or at least strongly influenced by soft computing tools and techniques, mainly related to neural networks, fuzzy logic, rough sets, and evolutionary computations.
A New Paradigm Of Knowledge Engineering By Soft Computing
Author: Liya Ding
Publisher: World Scientific
ISBN: 9814491764
Category : Computers
Languages : en
Pages : 392
Book Description
Soft computing (SC) consists of several computing paradigms, including neural networks, fuzzy set theory, approximate reasoning, and derivative-free optimization methods such as genetic algorithms. The integration of those constituent methodologies forms the core of SC. In addition, the synergy allows SC to incorporate human knowledge effectively, deal with imprecision and uncertainty, and learn to adapt to unknown or changing environments for better performance. Together with other modern technologies, SC and its applications exert unprecedented influence on intelligent systems that mimic human intelligence in thinking, learning, reasoning, and many other aspects.Knowledge engineering (KE), which deals with knowledge acquisition, representation, validation, inferencing, explanation, and maintenance, has made significant progress recently, owing to the indefatigable efforts of researchers. Undoubtedly, the hot topics of data mining and knowledge/data discovery have injected new life into the classical AI world.This book tells readers how KE has been influenced and extended by SC and how SC will be helpful in pushing the frontier of KE further. It is intended for researchers and graduate students to use as a reference in the study of knowledge engineering and intelligent systems. The reader is expected to have a basic knowledge of fuzzy logic, neural networks, genetic algorithms, and knowledge-based systems.
Publisher: World Scientific
ISBN: 9814491764
Category : Computers
Languages : en
Pages : 392
Book Description
Soft computing (SC) consists of several computing paradigms, including neural networks, fuzzy set theory, approximate reasoning, and derivative-free optimization methods such as genetic algorithms. The integration of those constituent methodologies forms the core of SC. In addition, the synergy allows SC to incorporate human knowledge effectively, deal with imprecision and uncertainty, and learn to adapt to unknown or changing environments for better performance. Together with other modern technologies, SC and its applications exert unprecedented influence on intelligent systems that mimic human intelligence in thinking, learning, reasoning, and many other aspects.Knowledge engineering (KE), which deals with knowledge acquisition, representation, validation, inferencing, explanation, and maintenance, has made significant progress recently, owing to the indefatigable efforts of researchers. Undoubtedly, the hot topics of data mining and knowledge/data discovery have injected new life into the classical AI world.This book tells readers how KE has been influenced and extended by SC and how SC will be helpful in pushing the frontier of KE further. It is intended for researchers and graduate students to use as a reference in the study of knowledge engineering and intelligent systems. The reader is expected to have a basic knowledge of fuzzy logic, neural networks, genetic algorithms, and knowledge-based systems.
New Concepts and Applications in Soft Computing
Author: Valentina Emilia Balas
Publisher: Springer
ISBN: 3642289592
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
The book provides a sample of research on the innovative theory and applications of soft computing paradigms. The idea of Soft Computing was initiated in 1981 when Professor Zadeh published his first paper on soft data analysis and constantly evolved ever since. Professor Zadeh defined Soft Computing as the fusion of the fields of fuzzy logic (FL), neural network theory (NN) and probabilistic reasoning (PR), with the latter subsuming belief networks, evolutionary computing including DNA computing, chaos theory and parts of learning theory into one multidisciplinary system. As Zadeh said the essence of soft computing is that unlike the traditional, hard computing, soft computing is aimed at an accommodation with the pervasive imprecision of the real world. Thus, the guiding principle of soft computing is to exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness, low solution cost and better rapport with reality. In the final analysis, the role model for soft computing is the human mind. We hope that the reader will share our excitement and find our volume both useful and inspiring.
Publisher: Springer
ISBN: 3642289592
Category : Technology & Engineering
Languages : en
Pages : 222
Book Description
The book provides a sample of research on the innovative theory and applications of soft computing paradigms. The idea of Soft Computing was initiated in 1981 when Professor Zadeh published his first paper on soft data analysis and constantly evolved ever since. Professor Zadeh defined Soft Computing as the fusion of the fields of fuzzy logic (FL), neural network theory (NN) and probabilistic reasoning (PR), with the latter subsuming belief networks, evolutionary computing including DNA computing, chaos theory and parts of learning theory into one multidisciplinary system. As Zadeh said the essence of soft computing is that unlike the traditional, hard computing, soft computing is aimed at an accommodation with the pervasive imprecision of the real world. Thus, the guiding principle of soft computing is to exploit the tolerance for imprecision, uncertainty and partial truth to achieve tractability, robustness, low solution cost and better rapport with reality. In the final analysis, the role model for soft computing is the human mind. We hope that the reader will share our excitement and find our volume both useful and inspiring.
Innovative Teaching Strategies and New Learning Paradigms in Computer Programming
Author: Ricardo Queirós
Publisher: IGI Global
ISBN: 1466673052
Category : Education
Languages : en
Pages : 339
Book Description
Courses in computer programming combine a number of different concepts, from general problem-solving to mathematical precepts such as algorithms and computational intelligence. Due to the complex nature of computer science education, teaching the novice programmer can be a challenge. Innovative Teaching Strategies and New Learning Paradigms in Computer Programming brings together pedagogical and technological methods to address the recent challenges that have developed in computer programming courses. Focusing on educational tools, computer science concepts, and educational design, this book is an essential reference source for teachers, practitioners, and scholars interested in improving the success rate of students.
Publisher: IGI Global
ISBN: 1466673052
Category : Education
Languages : en
Pages : 339
Book Description
Courses in computer programming combine a number of different concepts, from general problem-solving to mathematical precepts such as algorithms and computational intelligence. Due to the complex nature of computer science education, teaching the novice programmer can be a challenge. Innovative Teaching Strategies and New Learning Paradigms in Computer Programming brings together pedagogical and technological methods to address the recent challenges that have developed in computer programming courses. Focusing on educational tools, computer science concepts, and educational design, this book is an essential reference source for teachers, practitioners, and scholars interested in improving the success rate of students.
Machine Learning Paradigms
Author: Maria Virvou
Publisher: Springer
ISBN: 3030137430
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: • Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; • Using learning analytics to predict student performance; • Using learning analytics to create learning materials and educational courses; and • Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.
Publisher: Springer
ISBN: 3030137430
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators’ and learners’ data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: • Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; • Using learning analytics to predict student performance; • Using learning analytics to create learning materials and educational courses; and • Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.
Intelligent Systems Design and Applications
Author: Ajith Abraham
Publisher: Springer
ISBN: 354044999X
Category : Mathematics
Languages : en
Pages : 627
Book Description
The proceedings of the Third International Conference on Intelligent Systems Design and Applications (ISDA 2003) held in Tulsa, USA, August 10-13. Current research in all areas of computational intelligence is presented including design of artificial neural networks, fuzzy systems, evolutionary algorithms, hybrid computing systems, intelligent agents, and their applications in science, technology, business and commerce. Main themes addressed by the conference are the architectures of intelligent systems, image, speech and signal processing, internet modeling, data mining, business and management applications, control and automation, software agents and knowledge management.
Publisher: Springer
ISBN: 354044999X
Category : Mathematics
Languages : en
Pages : 627
Book Description
The proceedings of the Third International Conference on Intelligent Systems Design and Applications (ISDA 2003) held in Tulsa, USA, August 10-13. Current research in all areas of computational intelligence is presented including design of artificial neural networks, fuzzy systems, evolutionary algorithms, hybrid computing systems, intelligent agents, and their applications in science, technology, business and commerce. Main themes addressed by the conference are the architectures of intelligent systems, image, speech and signal processing, internet modeling, data mining, business and management applications, control and automation, software agents and knowledge management.
Lifelong Machine Learning, Second Edition
Author: Zhiyuan Sun
Publisher: Springer Nature
ISBN: 3031015819
Category : Computers
Languages : en
Pages : 187
Book Description
Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.
Publisher: Springer Nature
ISBN: 3031015819
Category : Computers
Languages : en
Pages : 187
Book Description
Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.
PRINCIPLES OF SOFT COMPUTING (With CD )
Author: S.N.Sivanandam & S.N.Deepa
Publisher: John Wiley & Sons
ISBN: 9788126510757
Category : Artificial intelligence
Languages : en
Pages : 768
Book Description
Market_Desc: · B. Tech (UG) students of CSE, IT, ECE· College Libraries· Research Scholars· Operational Research· Management Sector Special Features: Dr. S. N. Sivanandam has published 12 books· He has delivered around 150 special lectures of different specialization in Summer/Winter school and also in various Engineering colleges· He has guided and co guided 30 PhD research works and at present 9 PhD research scholars are working under him· The total number of technical publications in International/National Journals/Conferences is around 700· He has also received Certificate of Merit 2005-2006 for his paper from The Institution of Engineers (India)· He has chaired 7 International Conferences and 30 National Conferences. He is a member of various professional bodies like IE (India), ISTE, CSI, ACS and SSI. He is a technical advisor for various reputed industries and engineering institutions· His research areas include Modeling and Simulation, Neural Networks, Fuzzy Systems and Genetic Algorithm, Pattern Recognition, Multidimensional system analysis, Linear and Nonlinear control system, Signal and Image processing, Control System, Power system, Numerical methods, Parallel Computing, Data Mining and Database Security About The Book: This book is meant for a wide range of readers who wish to learn the basic concepts of soft computing. It can also be helpful for programmers, researchers and management experts who use soft computing techniques. The basic concepts of soft computing are dealt in detail with the relevant information and knowledge available for understanding the computing process. The various neural network concepts are explained with examples, highlighting the difference between various architectures. Fuzzy logic techniques have been clearly dealt with suitable examples. Genetic algorithm operators and the various classifications have been discussed in lucid manner, so that a beginner can understand the concepts with minimal effort.
Publisher: John Wiley & Sons
ISBN: 9788126510757
Category : Artificial intelligence
Languages : en
Pages : 768
Book Description
Market_Desc: · B. Tech (UG) students of CSE, IT, ECE· College Libraries· Research Scholars· Operational Research· Management Sector Special Features: Dr. S. N. Sivanandam has published 12 books· He has delivered around 150 special lectures of different specialization in Summer/Winter school and also in various Engineering colleges· He has guided and co guided 30 PhD research works and at present 9 PhD research scholars are working under him· The total number of technical publications in International/National Journals/Conferences is around 700· He has also received Certificate of Merit 2005-2006 for his paper from The Institution of Engineers (India)· He has chaired 7 International Conferences and 30 National Conferences. He is a member of various professional bodies like IE (India), ISTE, CSI, ACS and SSI. He is a technical advisor for various reputed industries and engineering institutions· His research areas include Modeling and Simulation, Neural Networks, Fuzzy Systems and Genetic Algorithm, Pattern Recognition, Multidimensional system analysis, Linear and Nonlinear control system, Signal and Image processing, Control System, Power system, Numerical methods, Parallel Computing, Data Mining and Database Security About The Book: This book is meant for a wide range of readers who wish to learn the basic concepts of soft computing. It can also be helpful for programmers, researchers and management experts who use soft computing techniques. The basic concepts of soft computing are dealt in detail with the relevant information and knowledge available for understanding the computing process. The various neural network concepts are explained with examples, highlighting the difference between various architectures. Fuzzy logic techniques have been clearly dealt with suitable examples. Genetic algorithm operators and the various classifications have been discussed in lucid manner, so that a beginner can understand the concepts with minimal effort.
Computational Intelligence Paradigms
Author: Mika Sato-Ilic
Publisher: Springer
ISBN: 3540794743
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
System designers are faced with a large set of data which has to be analysed and processed efficiently. Advanced computational intelligence paradigms present tremendous advantages by offering capabilities such as learning, generalisation and robustness. These capabilities help in designing complex systems which are intelligent and robust. The book includes a sample of research on the innovative applications of advanced computational intelligence paradigms. The characteristics of computational intelligence paradigms such as learning, generalization based on learned knowledge, knowledge extraction from imprecise and incomplete data are the extremely important for the implementation of intelligent machines. The chapters include architectures of computational intelligence paradigms, knowledge discovery, pattern classification, clusters, support vector machines and gene linkage analysis. We believe that the research on computational intelligence will simulate great interest among designers and researchers of complex systems. It is important to use the fusion of various constituents of computational intelligence to offset the demerits of one paradigm by the merits of another.
Publisher: Springer
ISBN: 3540794743
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
System designers are faced with a large set of data which has to be analysed and processed efficiently. Advanced computational intelligence paradigms present tremendous advantages by offering capabilities such as learning, generalisation and robustness. These capabilities help in designing complex systems which are intelligent and robust. The book includes a sample of research on the innovative applications of advanced computational intelligence paradigms. The characteristics of computational intelligence paradigms such as learning, generalization based on learned knowledge, knowledge extraction from imprecise and incomplete data are the extremely important for the implementation of intelligent machines. The chapters include architectures of computational intelligence paradigms, knowledge discovery, pattern classification, clusters, support vector machines and gene linkage analysis. We believe that the research on computational intelligence will simulate great interest among designers and researchers of complex systems. It is important to use the fusion of various constituents of computational intelligence to offset the demerits of one paradigm by the merits of another.
Artificial Immune Systems
Author: Giuseppe Nicosia
Publisher: Springer
ISBN: 3540302204
Category : Computers
Languages : en
Pages : 455
Book Description
Arti?cial Immune Systems have come of age. They are no longer an obscure computersciencetechnique,workedonbyacoupleoffarsightedresearchgroups. Today, researchers across the globe are working on new computer algorithms inspired by the workings of the immune system. This vigorous ?eld of research investigates how immunobiology can assist our technology, and along the way is beginning to help biologists understand their unique problems. AIS is now old enough to understand its roots, its context in the research community, and its exciting future. It has grown too big to be con?ned to s- cial sessions in evolutionary computation conferences. AIS researchers are now forming their own community and identity. The International Conference on Arti?cial Immune Systems is proud to be the premiere conference in the area. As its organizers, we were honored to have such a variety of innovative and original scienti?c papers presented this year. ICARIS 2004 was the third international conference dedicated entirely to the ?eld of Arti?cial Immune Systems (AIS). It was held in Catania, on the beautiful island of Sicily, Italy, during September 13–16, 2004. While hosting the conference, the city of Catania gave the participants the opportunity to enjoy the richness of its historical and cultural atmosphere and the beauty of its natural resources, the sea, and the Etna volcano.
Publisher: Springer
ISBN: 3540302204
Category : Computers
Languages : en
Pages : 455
Book Description
Arti?cial Immune Systems have come of age. They are no longer an obscure computersciencetechnique,workedonbyacoupleoffarsightedresearchgroups. Today, researchers across the globe are working on new computer algorithms inspired by the workings of the immune system. This vigorous ?eld of research investigates how immunobiology can assist our technology, and along the way is beginning to help biologists understand their unique problems. AIS is now old enough to understand its roots, its context in the research community, and its exciting future. It has grown too big to be con?ned to s- cial sessions in evolutionary computation conferences. AIS researchers are now forming their own community and identity. The International Conference on Arti?cial Immune Systems is proud to be the premiere conference in the area. As its organizers, we were honored to have such a variety of innovative and original scienti?c papers presented this year. ICARIS 2004 was the third international conference dedicated entirely to the ?eld of Arti?cial Immune Systems (AIS). It was held in Catania, on the beautiful island of Sicily, Italy, during September 13–16, 2004. While hosting the conference, the city of Catania gave the participants the opportunity to enjoy the richness of its historical and cultural atmosphere and the beauty of its natural resources, the sea, and the Etna volcano.