New Ideas In Low Dimensional Topology

New Ideas In Low Dimensional Topology PDF Author: Vassily Olegovich Manturov
Publisher: World Scientific
ISBN: 9814630632
Category : Mathematics
Languages : en
Pages : 541

Get Book Here

Book Description
This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.

New Ideas In Low Dimensional Topology

New Ideas In Low Dimensional Topology PDF Author: Vassily Olegovich Manturov
Publisher: World Scientific
ISBN: 9814630632
Category : Mathematics
Languages : en
Pages : 541

Get Book Here

Book Description
This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.

Knots, Low-Dimensional Topology and Applications

Knots, Low-Dimensional Topology and Applications PDF Author: Colin C. Adams
Publisher: Springer
ISBN: 3030160319
Category : Mathematics
Languages : en
Pages : 479

Get Book Here

Book Description
This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications – Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.

From Riches to Raags: 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry

From Riches to Raags: 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry PDF Author: Daniel T. Wise
Publisher: American Mathematical Soc.
ISBN: 0821888005
Category : Mathematics
Languages : en
Pages : 161

Get Book Here

Book Description
Wise describes a stream of geometric group theory connecting many of the classically considered groups arising in combinatorial group theory with right-angled Artin groups. He writes for new or seasoned researchers who have completed at least an introductory course of geometric groups theory or even just hyperbolic groups, but says some comfort with graphs of groups would be helpful. His topics include non-positively curved cube complexes, virtual specialness of malnormal amalgams, finiteness properties of the dual cube complex, walls in cubical small-cancellation theory, and hyperbolicity and quasiconvexity detection. Color drawings illustrate. Annotation ©2013 Book News, Inc., Portland, OR (booknews.com).

Characters in Low-Dimensional Topology

Characters in Low-Dimensional Topology PDF Author: Olivier Collin
Publisher: American Mathematical Soc.
ISBN: 147045209X
Category : Education
Languages : en
Pages : 372

Get Book Here

Book Description
This volume contains the proceedings of a conference celebrating the work of Steven Boyer, held from June 2–6, 2018, at Université du Québec à Montréal, Montréal, Québec, Canada. Boyer's contributions to research in low-dimensional geometry and topology, and to the Canadian mathematical community, were recognized during the conference. The articles cover a broad range of topics related, but not limited, to the topology and geometry of 3-manifolds, properties of their fundamental groups and associated representation varieties.

Floer Homology, Gauge Theory, and Low-Dimensional Topology

Floer Homology, Gauge Theory, and Low-Dimensional Topology PDF Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
ISBN: 9780821838457
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
Mathematical gauge theory studies connections on principal bundles, or, more precisely, the solution spaces of certain partial differential equations for such connections. Historically, these equations have come from mathematical physics, and play an important role in the description of the electro-weak and strong nuclear forces. The use of gauge theory as a tool for studying topological properties of four-manifolds was pioneered by the fundamental work of Simon Donaldson in theearly 1980s, and was revolutionized by the introduction of the Seiberg-Witten equations in the mid-1990s. Since the birth of the subject, it has retained its close connection with symplectic topology. The analogy between these two fields of study was further underscored by Andreas Floer's constructionof an infinite-dimensional variant of Morse theory that applies in two a priori different contexts: either to define symplectic invariants for pairs of Lagrangian submanifolds of a symplectic manifold, or to define topological This volume is based on lecture courses and advanced seminars given at the 2004 Clay Mathematics Institute Summer School at the Alfred Renyi Institute of Mathematics in Budapest, Hungary. Several of the authors have added a considerable amount of additional material tothat presented at the school, and the resulting volume provides a state-of-the-art introduction to current research, covering material from Heegaard Floer homology, contact geometry, smooth four-manifold topology, and symplectic four-manifolds. Information for our distributors: Titles in this seriesare copublished with the Clay Mathematics Institute (Cambridge, MA).

An Excursion in Diagrammatic Algebra

An Excursion in Diagrammatic Algebra PDF Author: J. Scott Carter
Publisher: World Scientific
ISBN: 9814374504
Category : Mathematics
Languages : en
Pages : 294

Get Book Here

Book Description
1. A sphere -- 2. Surfaces, folds, and cusps -- 3. The inside and outside -- 4. Dimensions -- 5. Immersed surfaces -- 6. Movies -- 7. Movie moves -- 8. Taxonomic summary -- 9. How not to turn the sphere inside-out -- 10. A physical metaphor -- 11. Sarah's thesis -- 12. The eversion -- 13. The double point and fold surfaces

Bordered Heegaard Floer Homology

Bordered Heegaard Floer Homology PDF Author: Robert Lipshitz
Publisher: American Mathematical Soc.
ISBN: 1470428881
Category : Mathematics
Languages : en
Pages : 294

Get Book Here

Book Description
The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.

Explorations in Topology

Explorations in Topology PDF Author: David Gay
Publisher: Elsevier
ISBN: 0124166407
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigations provide opportunities to work on many open-ended, non-routine problems and, through a modified "Moore method," to make conjectures from which theorems emerge. The revised end-of-chapter notes provide historical background to the chapter's ideas, introduce standard terminology, and make connections with mainstream mathematics. The final chapter of projects provides ideas for continued research. Explorations in Topology, Second Edition, enhances upper division courses and is a valuable reference for all levels of students and researchers working in topology. - Students begin to solve substantial problems from the start - Ideas unfold through the context of a storyline, and students become actively involved - The text models the problem-solving process, presents the development of concepts in a natural way, and helps the reader engage with the material

Ricci Flow and the Poincare Conjecture

Ricci Flow and the Poincare Conjecture PDF Author: John W. Morgan
Publisher: American Mathematical Soc.
ISBN: 9780821843284
Category : Mathematics
Languages : en
Pages : 586

Get Book Here

Book Description
For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute's seven Millennium Prize Problems. in 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman's three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton's work. The second part starts with Perelman's length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation. The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman's third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjectu The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston's Geometrization Conjecture. Thurston's Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. in addition, the fourth part is a much-expanded version of Perelman's third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series The Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

Instantons and Four-Manifolds

Instantons and Four-Manifolds PDF Author: Daniel S. Freed
Publisher: Springer Science & Business Media
ISBN: 1461397030
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
From the reviews of the first edition: "This book exposes the beautiful confluence of deep techniques and ideas from mathematical physics and the topological study of the differentiable structure of compact four-dimensional manifolds, compact spaces locally modeled on the world in which we live and operate... The book is filled with insightful remarks, proofs, and contributions that have never before appeared in print. For anyone attempting to understand the work of Donaldson and the applications of gauge theories to four-dimensional topology, the book is a must." #Science#1 "I would strongly advise the graduate student or working mathematician who wishes to learn the analytic aspects of this subject to begin with Freed and Uhlenbeck's book." #Bulletin of the American Mathematical Society#2