Author: Günter P. Merker
Publisher: Springer Science & Business Media
ISBN: 3642140947
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.
Combustion Engines Development
Author: Günter P. Merker
Publisher: Springer Science & Business Media
ISBN: 3642140947
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.
Publisher: Springer Science & Business Media
ISBN: 3642140947
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.
Advances in Internal Combustion Engine Research
Author: Dhananjay Kumar Srivastava
Publisher: Springer
ISBN: 9811075751
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.
Publisher: Springer
ISBN: 9811075751
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.
Advanced Technologies for Gas Turbines
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309664225
Category : Science
Languages : en
Pages : 137
Book Description
Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.
Publisher: National Academies Press
ISBN: 0309664225
Category : Science
Languages : en
Pages : 137
Book Description
Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.
Advances in IC Engines and Combustion Technology
Author: Ashwani K. Gupta
Publisher: Springer Nature
ISBN: 9811559961
Category : Technology & Engineering
Languages : en
Pages : 908
Book Description
This book comprises select peer-reviewed proceedings of the 26th National Conference on IC Engines and Combustion (NCICEC) 2019 which was organised by the Department of Mechanical Engineering, National Institute of Technology Kurukshetra under the aegis of The Combustion Institute-Indian Section (CIIS). The book covers latest research and developments in the areas of combustion and propulsion, exhaust emissions, gas turbines, hybrid vehicles, IC engines, and alternative fuels. The contents include theoretical and numerical tools applied to a wide range of combustion problems, and also discusses their applications. This book can be a good reference for engineers, educators and researchers working in the area of IC engines and combustion.
Publisher: Springer Nature
ISBN: 9811559961
Category : Technology & Engineering
Languages : en
Pages : 908
Book Description
This book comprises select peer-reviewed proceedings of the 26th National Conference on IC Engines and Combustion (NCICEC) 2019 which was organised by the Department of Mechanical Engineering, National Institute of Technology Kurukshetra under the aegis of The Combustion Institute-Indian Section (CIIS). The book covers latest research and developments in the areas of combustion and propulsion, exhaust emissions, gas turbines, hybrid vehicles, IC engines, and alternative fuels. The contents include theoretical and numerical tools applied to a wide range of combustion problems, and also discusses their applications. This book can be a good reference for engineers, educators and researchers working in the area of IC engines and combustion.
Technical Notes on Next Generation Aero Combustor Design-Development and Related Combustion Research
Author: Jushan Chin
Publisher: Nova Science Publishers
ISBN: 9781536197242
Category : Aircraft gas-turbines
Languages : en
Pages : 0
Book Description
"The aim of this book is to identify that extra high-pressure ratio (such as about 70) civil aero engine low emissions combustors and extra high fuel air ratio (FAR) (such as FAR greater than 0.051) military aero engine combustors make up the next generation of aero combustors. The aero thermal design of these combustors is very different from previous combustors and the major design points are proposed. Two types of high-pressure low emissions combustor design have been suggested: one is without fuel staging and the other is with fuel staging. The high FAR combustor design is brand new. The layout of the next-generation aero combustor is very different. There are no primary holes, no intermediate holes, and no dilution holes. They all have direct mixing combustion. For low-emissions combustors, it is lean direct mixing (LDM) combustion. For high-FAR combustors, it is stoichiometric direct mixing combustion. Combustion air fraction is very high (such as greater than 75%). That will induce idle condition lean blow out (LBO) issue. The present book has proposed several design approaches to solve idle LBO issue, which are effective. Pilot fuel air combustion is designed at idle condition. For civil combustor, maximum condition is designed for low emissions, while for high FAR combustor, maximum condition is designed for non-visible smoke, low luminous flame radiation and good combustion efficiency. For each type of combustor, the fuel air module configuration is designed, which is the most essential part of combustor design. The brand-new combustor cooling design has used a compound angle tangential inlet cooling hole configuration. Such a cooling design provides high cooling effectiveness. The diffuser configuration is totally new. It is an air bleeding diffuser, directly stretching forward to contact the dome. The bled air flows to the annular channel as cooling air. Aero combustor development is discussed in this book. In particular, the combustor developments from technology readiness level (TRL) 3 to TRL level 6 have been discussed in detail. Also reported is the technology to run combustor development tests correctly. Three topics of related combustion research by the present author are summarized in the brochure. They are: a. Fuel injection and co-flowing air combination. The key point is, for next generation combustor development, the designer should not only think about atomization. The combination of fuel injection and co-flowing air should be considered together as a whole device. b. Fuel spray evaporation calculation, the key is an engineering calculation of multi-component fuel evaporation shall be used. c. Non-luminous flame radiation calculation, which has been significantly updated. The present book is a summary of the author's ten years of study on next-generation aero combustors after retirement. It represents advanced aero combustor technology level"--
Publisher: Nova Science Publishers
ISBN: 9781536197242
Category : Aircraft gas-turbines
Languages : en
Pages : 0
Book Description
"The aim of this book is to identify that extra high-pressure ratio (such as about 70) civil aero engine low emissions combustors and extra high fuel air ratio (FAR) (such as FAR greater than 0.051) military aero engine combustors make up the next generation of aero combustors. The aero thermal design of these combustors is very different from previous combustors and the major design points are proposed. Two types of high-pressure low emissions combustor design have been suggested: one is without fuel staging and the other is with fuel staging. The high FAR combustor design is brand new. The layout of the next-generation aero combustor is very different. There are no primary holes, no intermediate holes, and no dilution holes. They all have direct mixing combustion. For low-emissions combustors, it is lean direct mixing (LDM) combustion. For high-FAR combustors, it is stoichiometric direct mixing combustion. Combustion air fraction is very high (such as greater than 75%). That will induce idle condition lean blow out (LBO) issue. The present book has proposed several design approaches to solve idle LBO issue, which are effective. Pilot fuel air combustion is designed at idle condition. For civil combustor, maximum condition is designed for low emissions, while for high FAR combustor, maximum condition is designed for non-visible smoke, low luminous flame radiation and good combustion efficiency. For each type of combustor, the fuel air module configuration is designed, which is the most essential part of combustor design. The brand-new combustor cooling design has used a compound angle tangential inlet cooling hole configuration. Such a cooling design provides high cooling effectiveness. The diffuser configuration is totally new. It is an air bleeding diffuser, directly stretching forward to contact the dome. The bled air flows to the annular channel as cooling air. Aero combustor development is discussed in this book. In particular, the combustor developments from technology readiness level (TRL) 3 to TRL level 6 have been discussed in detail. Also reported is the technology to run combustor development tests correctly. Three topics of related combustion research by the present author are summarized in the brochure. They are: a. Fuel injection and co-flowing air combination. The key point is, for next generation combustor development, the designer should not only think about atomization. The combination of fuel injection and co-flowing air should be considered together as a whole device. b. Fuel spray evaporation calculation, the key is an engineering calculation of multi-component fuel evaporation shall be used. c. Non-luminous flame radiation calculation, which has been significantly updated. The present book is a summary of the author's ten years of study on next-generation aero combustors after retirement. It represents advanced aero combustor technology level"--
Lean Combustion
Author: Derek Dunn-Rankin
Publisher: Academic Press
ISBN: 0080550525
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Combustion under sufficiently fuel-lean conditions can have the desirable attributes of high efficiency and low emissions, this being particularly important in light of recent and rapid increases in the cost of fossil fuels and concerns over the links between combustion and global climate change. Lean Combustion is an eminently authoritative, reference work on the latest advances in lean combustion technology and systems. It will offer engineers working on combustion equipment and systems both the fundamentals and the latest developments in more efficient fuel usage and in much-sought-after reductions of undesirable emissions, while still achieving desired power output and performance. This volume brings together research and design of lean combustion systems across the technology spectrum in order to explore the state-of-the-art in lean combustion and its role in meeting current and future demands on combustion systems. Readers will learn about advances in the understanding of ultra lean fuel mixtures and how new types of burners and approaches to managing heat flow can reduce problems often found with lean combustion such as slow, difficult ignition and frequent flame extinction. The book will also offer abundant references and examples of recent real-world applications. - Covers all major recent developments in lean combustion science and technology, with new applications in both traditional combustion schemes as well as such novel uses as highly preheated and hydrogen-fueled systems - Offers techniques for overcoming difficult ignition problems and flame extinction with lean fuel mixtures - Covers new developments in lean combustion using high levels of pre-heat and heat re-circulating burners, as well as the active control of lean combustion instabilities
Publisher: Academic Press
ISBN: 0080550525
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
Combustion under sufficiently fuel-lean conditions can have the desirable attributes of high efficiency and low emissions, this being particularly important in light of recent and rapid increases in the cost of fossil fuels and concerns over the links between combustion and global climate change. Lean Combustion is an eminently authoritative, reference work on the latest advances in lean combustion technology and systems. It will offer engineers working on combustion equipment and systems both the fundamentals and the latest developments in more efficient fuel usage and in much-sought-after reductions of undesirable emissions, while still achieving desired power output and performance. This volume brings together research and design of lean combustion systems across the technology spectrum in order to explore the state-of-the-art in lean combustion and its role in meeting current and future demands on combustion systems. Readers will learn about advances in the understanding of ultra lean fuel mixtures and how new types of burners and approaches to managing heat flow can reduce problems often found with lean combustion such as slow, difficult ignition and frequent flame extinction. The book will also offer abundant references and examples of recent real-world applications. - Covers all major recent developments in lean combustion science and technology, with new applications in both traditional combustion schemes as well as such novel uses as highly preheated and hydrogen-fueled systems - Offers techniques for overcoming difficult ignition problems and flame extinction with lean fuel mixtures - Covers new developments in lean combustion using high levels of pre-heat and heat re-circulating burners, as well as the active control of lean combustion instabilities
Major Research Topics in Combustion
Author: M.Y. Hussaini
Publisher: Springer Science & Business Media
ISBN: 1461228840
Category : Science
Languages : en
Pages : 668
Book Description
The Institute for Computer Applications in Science and Engineer ing (ICASE) and NASA Langley Research Center (LaRC) brought together on October 2-4, 1989 experts in the various areas of com bustion with a view to expose them to some combustion problems of technological interest to LaRC and possibly foster interaction with the academic community in these research areas. The top ics chosen for this purpose were flame structure, flame stability, flame holding/extinction, chemical kinetics, turbulence-kinetics in teraction, transition to detonation, and reacting free shear layers. The lead paper set the stage by discussing the status and issues of supersonic combustion relevant to scramjet engine. Then the ex perts were called upon i) to review the current status of knowledge in the aforementioned ;:I. reas, ii) to focus on how this knowledge can be extended and applied to high-speed combustion, and iii) to suggest future directions of research in these areas. Each topic was then dealt with in a position paper followed by formal discussion papers and a general discussion involving the participants. The position papers discussed the state-of-the-art with an emphasis on key issues that needed to be resolved in the near future. The discussion papers crit ically examined these issues and filled in any lacunae therein. The edited versions of the general discussions in the form of questions from the audience and answers from the speakers are included wher ever possible to give the reader the flavor of the lively interactions that took place.
Publisher: Springer Science & Business Media
ISBN: 1461228840
Category : Science
Languages : en
Pages : 668
Book Description
The Institute for Computer Applications in Science and Engineer ing (ICASE) and NASA Langley Research Center (LaRC) brought together on October 2-4, 1989 experts in the various areas of com bustion with a view to expose them to some combustion problems of technological interest to LaRC and possibly foster interaction with the academic community in these research areas. The top ics chosen for this purpose were flame structure, flame stability, flame holding/extinction, chemical kinetics, turbulence-kinetics in teraction, transition to detonation, and reacting free shear layers. The lead paper set the stage by discussing the status and issues of supersonic combustion relevant to scramjet engine. Then the ex perts were called upon i) to review the current status of knowledge in the aforementioned ;:I. reas, ii) to focus on how this knowledge can be extended and applied to high-speed combustion, and iii) to suggest future directions of research in these areas. Each topic was then dealt with in a position paper followed by formal discussion papers and a general discussion involving the participants. The position papers discussed the state-of-the-art with an emphasis on key issues that needed to be resolved in the near future. The discussion papers crit ically examined these issues and filled in any lacunae therein. The edited versions of the general discussions in the form of questions from the audience and answers from the speakers are included wher ever possible to give the reader the flavor of the lively interactions that took place.
New Developments in the Visualization and Processing of Tensor Fields
Author: David H. Laidlaw
Publisher: Springer Science & Business Media
ISBN: 3642273424
Category : Mathematics
Languages : en
Pages : 389
Book Description
Bringing together key researchers in disciplines ranging from visualization and image processing to applications in structural mechanics, fluid dynamics, elastography, and numerical mathematics, the workshop that generated this edited volume was the third in the successful Dagstuhl series. Its aim, reflected in the quality and relevance of the papers presented, was to foster collaboration and fresh lines of inquiry in the analysis and visualization of tensor fields, which offer a concise model for numerous physical phenomena. Despite their utility, there remains a dearth of methods for studying all but the simplest ones, a shortage the workshops aim to address. Documenting the latest progress and open research questions in tensor field analysis, the chapters reflect the excitement and inspiration generated by this latest Dagstuhl workshop, held in July 2009. The topics they address range from applications of the analysis of tensor fields to purer research into their mathematical and analytical properties. They show how cooperation and the sharing of ideas and data between those engaged in pure and applied research can open new vistas in the study of tensor fields.
Publisher: Springer Science & Business Media
ISBN: 3642273424
Category : Mathematics
Languages : en
Pages : 389
Book Description
Bringing together key researchers in disciplines ranging from visualization and image processing to applications in structural mechanics, fluid dynamics, elastography, and numerical mathematics, the workshop that generated this edited volume was the third in the successful Dagstuhl series. Its aim, reflected in the quality and relevance of the papers presented, was to foster collaboration and fresh lines of inquiry in the analysis and visualization of tensor fields, which offer a concise model for numerous physical phenomena. Despite their utility, there remains a dearth of methods for studying all but the simplest ones, a shortage the workshops aim to address. Documenting the latest progress and open research questions in tensor field analysis, the chapters reflect the excitement and inspiration generated by this latest Dagstuhl workshop, held in July 2009. The topics they address range from applications of the analysis of tensor fields to purer research into their mathematical and analytical properties. They show how cooperation and the sharing of ideas and data between those engaged in pure and applied research can open new vistas in the study of tensor fields.
Turbulent Combustion Modeling
Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.
Modelling Diesel Combustion
Author: P. A. Lakshminarayanan
Publisher: Springer Science & Business Media
ISBN: 904813885X
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.
Publisher: Springer Science & Business Media
ISBN: 904813885X
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.