Neuronal Mechanics and Transport

Neuronal Mechanics and Transport PDF Author: Daniel M. Suter
Publisher: Frontiers Media SA
ISBN: 2889198235
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 214

Get Book Here

Book Description
Understanding the underlying mechanisms of how axons and dendrites develop is a fundamental problem in neuroscience and a main goal of research on nervous system development and regeneration. Previous studies have provided a tremendous amount of information on signaling and cytoskeletal proteins regulating axonal and dendritic growth and guidance. However, relatively little is known about the relative contribution and role of cytoskeletal dynamics, transport of organelles and cytoskeletal components, and force generation to axonal elongation. Advancing the knowledge of these biomechanical processes is critical to better understand the development of the nervous system, the pathological progression of neurodegenerative diseases, acute traumatic injury, and for designing novel approaches to promote neuronal regeneration following disease, stroke, or trauma. Mechanical properties and forces shape the development of the nervous system from the cellular up to the organ level. Recent advances in quantitative live cell imaging, biophysical, and nanotechnological methods such as traction force microscopy, optical tweezers, and atomic force microscopy have enabled researchers to gain better insights into how cytoskeletal dynamics and motor-driven transport, membrane-dynamics, adhesion, and substrate rigidity influence axonal elongation. Given the complexity and mechanical nature of this problem, mathematical modeling contributes significantly to our understanding of neuronal mechanics. Nonetheless, there has been limited direct interaction and discussions between experimentalists and theoreticians in this research area. The purpose of this Frontiers Research Topic is to highlight exciting, and important work that is currently developing in the fields of neuronal cell biology, neuronal mechanics, intracellular transport, and mathematical modeling in the form of primary research articles, reviews, perspectives, and commentaries.

Neuronal Mechanics and Transport

Neuronal Mechanics and Transport PDF Author: Daniel M. Suter
Publisher: Frontiers Media SA
ISBN: 2889198235
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 214

Get Book Here

Book Description
Understanding the underlying mechanisms of how axons and dendrites develop is a fundamental problem in neuroscience and a main goal of research on nervous system development and regeneration. Previous studies have provided a tremendous amount of information on signaling and cytoskeletal proteins regulating axonal and dendritic growth and guidance. However, relatively little is known about the relative contribution and role of cytoskeletal dynamics, transport of organelles and cytoskeletal components, and force generation to axonal elongation. Advancing the knowledge of these biomechanical processes is critical to better understand the development of the nervous system, the pathological progression of neurodegenerative diseases, acute traumatic injury, and for designing novel approaches to promote neuronal regeneration following disease, stroke, or trauma. Mechanical properties and forces shape the development of the nervous system from the cellular up to the organ level. Recent advances in quantitative live cell imaging, biophysical, and nanotechnological methods such as traction force microscopy, optical tweezers, and atomic force microscopy have enabled researchers to gain better insights into how cytoskeletal dynamics and motor-driven transport, membrane-dynamics, adhesion, and substrate rigidity influence axonal elongation. Given the complexity and mechanical nature of this problem, mathematical modeling contributes significantly to our understanding of neuronal mechanics. Nonetheless, there has been limited direct interaction and discussions between experimentalists and theoreticians in this research area. The purpose of this Frontiers Research Topic is to highlight exciting, and important work that is currently developing in the fields of neuronal cell biology, neuronal mechanics, intracellular transport, and mathematical modeling in the form of primary research articles, reviews, perspectives, and commentaries.

Transport in Biological Media

Transport in Biological Media PDF Author: Sid M. Becker
Publisher: Newnes
ISBN: 0123978491
Category : Technology & Engineering
Languages : en
Pages : 575

Get Book Here

Book Description
Transport in Biological Media is a solid resource of mathematical models for researchers across a broad range of scientific and engineering problems such as the effects of drug delivery, chemotherapy, or insulin intake to interpret transport experiments in areas of cutting edge biological research. A wide range of emerging theoretical and experimental mathematical methodologies are offered by biological topic to appeal to individual researchers to assist them in solving problems in their specific area of research. Researchers in biology, biophysics, biomathematics, chemistry, engineers and clinical fields specific to transport modeling will find this resource indispensible. - Provides detailed mathematical model development to interpret experiments and provides current modeling practices - Provides a wide range of biological and clinical applications - Includes physiological descriptions of models

Nano and Cell Mechanics

Nano and Cell Mechanics PDF Author: Horacio D. Espinosa
Publisher: John Wiley & Sons
ISBN: 111848259X
Category : Technology & Engineering
Languages : en
Pages : 519

Get Book Here

Book Description
Research in nano and cell mechanics has received much attention from the scientific community as a result of society needs and government initiatives to accelerate developments in materials, manufacturing, electronics, medicine and healthcare, energy, and the environment. Engineers and scientists are currently engaging in increasingly complex scientific problems that require interdisciplinary approaches. In this regard, studies in this field draw from fundamentals in atomistic scale phenomena, biology, statistical and continuum mechanics, and multiscale modeling and experimentation. As a result, contributions in these areas are spread over a large number of specialized journals, which prompted the Editors to assemble this book. Nano and Cell Mechanics: Fundamentals and Frontiers brings together many of the new developments in the field for the first time, and covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. Key features: • Provides an overview of recent advances in nano and cell mechanics. • Covers experimental, analytical, and computational tools used to investigate biological and nanoscale phenomena. • Covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. • Presents multiscale-multiphysics modeling and experimentation techniques. • Examines applications in materials, manufacturing, electronics, medicine and healthcare. Nano and Cell Mechanics: Fundamentals and Frontiers is written by internationally recognized experts in theoretical and applied mechanics, applied physics, chemistry, and biology. It is an invaluable reference for graduate students of nano- and bio-technologies, researchers in academia and industry who are working in nano and cell mechanics, and practitioners who are interested in learning about the latest analysis tools. The book can also serve as a text for graduate courses in theoretical and applied mechanics, mechanical engineering, materials science, and applied physics.

Neuronal Mechanics and Transport

Neuronal Mechanics and Transport PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Understanding the underlying mechanisms of how axons and dendrites develop is a fundamental problem in neuroscience and a main goal of research on nervous system development and regeneration. Previous studies have provided a tremendous amount of information on signaling and cytoskeletal proteins regulating axonal and dendritic growth and guidance. However, relatively little is known about the relative contribution and role of cytoskeletal dynamics, transport of organelles and cytoskeletal components, and force generation to axonal elongation. Advancing the knowledge of these biomechanical processes is critical to better understand the development of the nervous system, the pathological progression of neurodegenerative diseases, acute traumatic injury, and for designing novel approaches to promote neuronal regeneration following disease, stroke, or trauma. Mechanical properties and forces shape the development of the nervous system from the cellular up to the organ level. Recent advances in quantitative live cell imaging, biophysical, and nanotechnological methods such as traction force microscopy, optical tweezers, and atomic force microscopy have enabled researchers to gain better insights into how cytoskeletal dynamics and motor-driven transport, membrane-dynamics, adhesion, and substrate rigidity influence axonal elongation. Given the complexity and mechanical nature of this problem, mathematical modeling contributes significantly to our understanding of neuronal mechanics. Nonetheless, there has been limited direct interaction and discussions between experimentalists and theoreticians in this research area. The purpose of this Frontiers Research Topic is to highlight exciting and important work that is currently developing in the fields of neuronal cell biology, neuronal mechanics, intracellular transport, and mathematical modeling in the form of primary research articles, reviews, perspectives, and commentaries.

Neuroscience for Clinicians

Neuroscience for Clinicians PDF Author: Eduardo E. Benarroch
Publisher: Oxford University Press
ISBN: 0190948892
Category : Medical
Languages : en
Pages : 833

Get Book Here

Book Description
This book with provide clinicians with focused reviews on basic sciences to help understanding the mechanisms and treatment of neurologic disease. The chapters emphasize how genetic, molecular and cellular, mechanisms and their interactions control the function of the nervous system and provide the bases for a wide range of neurologic disorders. They include neurodegenerative disorders, epilepsy, movement disorders, peripheral neuropathy, and chronic pain, among others. The chapters contains several figures and tables that summarize the most important concepts

The Neuron

The Neuron PDF Author: Irwin B. Levitan
Publisher: Oxford University Press, USA
ISBN: 9780195145236
Category : Language Arts & Disciplines
Languages : en
Pages : 640

Get Book Here

Book Description
Intended for use by advanced undergraduate, graduate and medical students, this book presents a study of the unique biochemical and physiological properties of neurons, emphasising the molecular mechanisms that generate and regulate their activity.

Molecular and Cellular Biomechanics

Molecular and Cellular Biomechanics PDF Author: Bradley Layton
Publisher: CRC Press
ISBN: 9814613444
Category : Medical
Languages : en
Pages : 228

Get Book Here

Book Description
This book bridges the gap between life sciences and physical sciences by providing several perspectives on cellular and molecular mechanics on a fundamental level. It begins with a general introduction to the scales and terms that are used in the field of cellular and molecular biomechanics and then moves from the molecular scale to the tissue scal

Modeling of Microscale Transport in Biological Processes

Modeling of Microscale Transport in Biological Processes PDF Author: Sid M. Becker
Publisher: Academic Press
ISBN: 9780128045954
Category : Medical
Languages : en
Pages : 0

Get Book Here

Book Description
Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels.

Glial Plasticity in Depression

Glial Plasticity in Depression PDF Author: João F. Oliveira
Publisher: Frontiers Media SA
ISBN: 2889199991
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 101

Get Book Here

Book Description
Major depression is a highly prevalent disorder that poses a significant social burden in society nowadays. The pathophysiology of this disease is still poorly understood but growing evidence suggests that impaired neuron and glial plasticity may be a key underlying mechanism for the precipitation of the disorder. One of the most surprising findings in this field was the involvement of glial cells in the pathophysiology of major depression and in the action of antidepressants, namely in mechanisms related with adult neurogenesis imbalances or dendritic arborization impairments. In particular, several works refer to alterations in the morphology and numbers of astrocytes, microglia and oligodendrocytes in the context of depression in human patients or animal models of depression. These observations were linked to functional evidences and suggested to underlie the pathophysiology of depression. Among others, these include impairments in the cross-talk between glia and neurons, changes in the level of neurotransmitter or immunoactive substances, myelination status, synapse formation, maintenance, or elimination. In addition to the implication of glia in the pathophysiology of depression, a number of studies is ascribing glia pathways to classically accepted antidepressant mechanisms. Therefore, it is noteworthy to elucidate the role of glia in the effect provided by antidepressant treatment in order to better understand secondary effects and elucidate alternative targets for treatment.

Modularity in Motor Control: From Muscle Synergies to Cognitive Action Representation

Modularity in Motor Control: From Muscle Synergies to Cognitive Action Representation PDF Author: Andrea d'Avella
Publisher: Frontiers Media SA
ISBN: 2889198057
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 794

Get Book Here

Book Description
Mastering a rich repertoire of motor behaviors, as humans and other animals do, is a surprising and still poorly understood outcome of evolution, development, and learning. Many degrees-of-freedom, non-linear dynamics, and sensory delays provide formidable challenges for controlling even simple actions. Modularity as a functional element, both structural and computational, of a control architecture might be the key organizational principle that the central nervous system employs for achieving versatility and adaptability in motor control. Recent investigations of muscle synergies, motor primitives, compositionality, basic action concepts, and related work in machine learning have contributed to advance, at different levels, our understanding of the modular architecture underlying rich motor behaviors. However, the existence and nature of the modules in the control architecture is far from settled. For instance, regularity and low-dimensionality in the motor output are often taken as an indication of modularity but could they simply be a byproduct of optimization and task constraints? Moreover, what are the relationships between modules at different levels, such as muscle synergies, kinematic invariants, and basic action concepts? One important reason for the new interest in understanding modularity in motor control from different viewpoints is the impressive development in cognitive robotics. In comparison to animals and humans, the motor skills of today’s best robots are limited and inflexible. However, robot technology is maturing to the point at which it can start approximating a reasonable spectrum of isolated perceptual, cognitive, and motor capabilities. These advances allow researchers to explore how these motor, sensory and cognitive functions might be integrated into meaningful architectures and to test their functional limits. Such systems provide a new test bed to explore different concepts of modularity and to address the interaction between motor and cognitive processes experimentally. Thus, the goal of this Research Topic is to review, compare, and debate theoretical and experimental investigations of the modular organization of the motor control system at different levels. By bringing together researchers seeking to understand the building blocks for coordinating many muscles, for planning endpoint and joint trajectories, and for representing motor and behavioral actions in memory we aim at promoting new interactions between often disconnected research areas and approaches and at providing a broad perspective on the idea of modularity in motor control. We welcome original research, methodological, theoretical, review, and perspective contributions from behavioral, system, and computational motor neuroscience research, cognitive psychology, and cognitive robotics.