Author: Scott L. Hooper
Publisher: John Wiley & Sons
ISBN: 1118873629
Category : Medical
Languages : en
Pages : 690
Book Description
A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.
Neurobiology of Motor Control
Author: Scott L. Hooper
Publisher: John Wiley & Sons
ISBN: 1118873629
Category : Medical
Languages : en
Pages : 690
Book Description
A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.
Publisher: John Wiley & Sons
ISBN: 1118873629
Category : Medical
Languages : en
Pages : 690
Book Description
A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.
Broken Movement
Author: John W. Krakauer
Publisher: MIT Press
ISBN: 0262545837
Category : Medical
Languages : en
Pages : 288
Book Description
An account of the neurobiology of motor recovery in the arm and hand after stroke by two experts in the field. Stroke is a leading cause of disability in adults and recovery is often difficult, with existing rehabilitation therapies largely ineffective. In Broken Movement, John Krakauer and S. Thomas Carmichael, both experts in the field, provide an account of the neurobiology of motor recovery in the arm and hand after stroke. They cover topics that range from behavior to physiology to cellular and molecular biology. Broken Movement is the only accessible single-volume work that covers motor control and motor learning as they apply to stroke recovery and combines them with motor cortical physiology and molecular biology. The authors cast a critical eye at current frameworks and practices, offer new recommendations for promoting recovery, and propose new research directions for the study of brain repair. Krakauer and Carmichael discuss such subjects as the behavioral phenotype of hand and arm paresis in human and non-human primates; the physiology and anatomy of the motor system after stroke; mechanisms of spontaneous recovery; the time course of early recovery; the challenges of chronic stroke; and pharmacological and stem cell therapies. They argue for a new approach in which patients are subjected to higher doses and intensities of rehabilitation in a more dynamic and enriching environment early after stroke. Finally they review the potential of four areas to improve motor recovery: video gaming and virtual reality, invasive brain stimulation, re-opening the sensitive period after stroke, and the application of precision medicine.
Publisher: MIT Press
ISBN: 0262545837
Category : Medical
Languages : en
Pages : 288
Book Description
An account of the neurobiology of motor recovery in the arm and hand after stroke by two experts in the field. Stroke is a leading cause of disability in adults and recovery is often difficult, with existing rehabilitation therapies largely ineffective. In Broken Movement, John Krakauer and S. Thomas Carmichael, both experts in the field, provide an account of the neurobiology of motor recovery in the arm and hand after stroke. They cover topics that range from behavior to physiology to cellular and molecular biology. Broken Movement is the only accessible single-volume work that covers motor control and motor learning as they apply to stroke recovery and combines them with motor cortical physiology and molecular biology. The authors cast a critical eye at current frameworks and practices, offer new recommendations for promoting recovery, and propose new research directions for the study of brain repair. Krakauer and Carmichael discuss such subjects as the behavioral phenotype of hand and arm paresis in human and non-human primates; the physiology and anatomy of the motor system after stroke; mechanisms of spontaneous recovery; the time course of early recovery; the challenges of chronic stroke; and pharmacological and stem cell therapies. They argue for a new approach in which patients are subjected to higher doses and intensities of rehabilitation in a more dynamic and enriching environment early after stroke. Finally they review the potential of four areas to improve motor recovery: video gaming and virtual reality, invasive brain stimulation, re-opening the sensitive period after stroke, and the application of precision medicine.
The Computational Neurobiology of Reaching and Pointing
Author: Reza Shadmehr
Publisher: MIT Press
ISBN: 9780262195089
Category : Medical
Languages : en
Pages : 608
Book Description
An introduction to the computational biology of reaching and pointing, with an emphasis on motor learning. Neuroscience involves the study of the nervous system, and its topics range from genetics to inferential reasoning. At its heart, however, lies a search for understanding how the environment affects the nervous system and how the nervous system, in turn, empowers us to interact with and alter our environment. This empowerment requires motor learning. The Computational Neurobiology of Reaching and Pointing addresses the neural mechanisms of one important form of motor learning. The authors integrate material from the computational, behavioral, and neural sciences of motor control that is not available in any other single source. The result is a unified, comprehensive model of reaching and pointing. The book is intended to be used as a text by graduate students in both neuroscience and bioengineering and as a reference source by experts in neuroscience, robotics, and other disciplines. The book begins with an overview of the evolution, anatomy, and physiology of the motor system, including the mechanisms for generating force and maintaining limb stability. The sections that follow, "Computing Locations and Displacements", "Skills, Adaptations, and Trajectories", and "Predictions, Decisions, and Flexibility", present a theory of sensorially guided reaching and pointing that evolves organically based on computational principles rather than a traditional structure-by-structure approach. The book also includes five appendixes that provide brief refreshers on fundamentals of biology, mathematics, physics, and neurophysiology, as well as a glossary of relevant terms. The authors have also made supplemental materials available on the Internet. These web documents provide source code for simulations, step-by-step derivations of certain mathematical formulations, and expanded explanations of some concepts.
Publisher: MIT Press
ISBN: 9780262195089
Category : Medical
Languages : en
Pages : 608
Book Description
An introduction to the computational biology of reaching and pointing, with an emphasis on motor learning. Neuroscience involves the study of the nervous system, and its topics range from genetics to inferential reasoning. At its heart, however, lies a search for understanding how the environment affects the nervous system and how the nervous system, in turn, empowers us to interact with and alter our environment. This empowerment requires motor learning. The Computational Neurobiology of Reaching and Pointing addresses the neural mechanisms of one important form of motor learning. The authors integrate material from the computational, behavioral, and neural sciences of motor control that is not available in any other single source. The result is a unified, comprehensive model of reaching and pointing. The book is intended to be used as a text by graduate students in both neuroscience and bioengineering and as a reference source by experts in neuroscience, robotics, and other disciplines. The book begins with an overview of the evolution, anatomy, and physiology of the motor system, including the mechanisms for generating force and maintaining limb stability. The sections that follow, "Computing Locations and Displacements", "Skills, Adaptations, and Trajectories", and "Predictions, Decisions, and Flexibility", present a theory of sensorially guided reaching and pointing that evolves organically based on computational principles rather than a traditional structure-by-structure approach. The book also includes five appendixes that provide brief refreshers on fundamentals of biology, mathematics, physics, and neurophysiology, as well as a glossary of relevant terms. The authors have also made supplemental materials available on the Internet. These web documents provide source code for simulations, step-by-step derivations of certain mathematical formulations, and expanded explanations of some concepts.
The Oxford Handbook of Invertebrate Neurobiology
Author: John H. Byrne
Publisher: Oxford University Press
ISBN: 0190456779
Category : Science
Languages : en
Pages : 777
Book Description
Invertebrates have proven to be extremely useful model systems for gaining insights into the neural and molecular mechanisms of sensory processing, motor control and higher functions such as feeding behavior, learning and memory, navigation, and social behavior. A major factor in their enormous contributions to neuroscience is the relative simplicity of invertebrate nervous systems. In addition, some invertebrates, primarily the molluscs, have large cells, which allow analyses to take place at the level of individually identified neurons. Individual neurons can be surgically removed and assayed for expression of membrane channels, levels of second messengers, protein phosphorylation, and RNA and protein synthesis. Moreover, peptides and nucleotides can be injected into individual neurons. Other invertebrate model systems such as Drosophila and Caenorhabditis elegans offer tremendous advantages for obtaining insights into the neuronal bases of behavior through the application of genetic approaches. The Oxford Handbook of Invertebrate Neurobiology reviews the many neurobiological principles that have emerged from invertebrate analyses, such as motor pattern generation, mechanisms of synaptic transmission, and learning and memory. It also covers general features of the neurobiology of invertebrate circadian rhythms, development, and regeneration and reproduction. Some neurobiological phenomena are species-specific and diverse, especially in the domain of the neuronal control of locomotion and camouflage. Thus, separate chapters are provided on the control of swimming in annelids, crustaea and molluscs, locomotion in hexapods, and camouflage in cephalopods. Unique features of the handbook include chapters that review social behavior and intentionality in invertebrates. A chapter is devoted to summarizing past contributions of invertebrates to the understanding of nervous systems and identifying areas for future studies that will continue to advance that understanding.
Publisher: Oxford University Press
ISBN: 0190456779
Category : Science
Languages : en
Pages : 777
Book Description
Invertebrates have proven to be extremely useful model systems for gaining insights into the neural and molecular mechanisms of sensory processing, motor control and higher functions such as feeding behavior, learning and memory, navigation, and social behavior. A major factor in their enormous contributions to neuroscience is the relative simplicity of invertebrate nervous systems. In addition, some invertebrates, primarily the molluscs, have large cells, which allow analyses to take place at the level of individually identified neurons. Individual neurons can be surgically removed and assayed for expression of membrane channels, levels of second messengers, protein phosphorylation, and RNA and protein synthesis. Moreover, peptides and nucleotides can be injected into individual neurons. Other invertebrate model systems such as Drosophila and Caenorhabditis elegans offer tremendous advantages for obtaining insights into the neuronal bases of behavior through the application of genetic approaches. The Oxford Handbook of Invertebrate Neurobiology reviews the many neurobiological principles that have emerged from invertebrate analyses, such as motor pattern generation, mechanisms of synaptic transmission, and learning and memory. It also covers general features of the neurobiology of invertebrate circadian rhythms, development, and regeneration and reproduction. Some neurobiological phenomena are species-specific and diverse, especially in the domain of the neuronal control of locomotion and camouflage. Thus, separate chapters are provided on the control of swimming in annelids, crustaea and molluscs, locomotion in hexapods, and camouflage in cephalopods. Unique features of the handbook include chapters that review social behavior and intentionality in invertebrates. A chapter is devoted to summarizing past contributions of invertebrates to the understanding of nervous systems and identifying areas for future studies that will continue to advance that understanding.
Motor Neurobiology of the Spinal Cord
Author: Timothy C. Cope
Publisher: CRC Press
ISBN: 1040202888
Category : Medical
Languages : en
Pages : 260
Book Description
Motor Neurobiology of the Spinal Cord provides a comprehensive description of the experimental tools available for investigating the neuronal properties that allow populations of spinal cord neurons to control muscles responsible for limb movements and posture control. By integrating data from many new approaches, this text demonstrates how spinal cord circuits operate under a variety conditions and explores the new and exciting developments that are being made in motor neurobiology of the spinal cord. It also elucidates concepts and principles relevant to function and structure throughout the nervous system and presents information about changes induced by injury and disease.
Publisher: CRC Press
ISBN: 1040202888
Category : Medical
Languages : en
Pages : 260
Book Description
Motor Neurobiology of the Spinal Cord provides a comprehensive description of the experimental tools available for investigating the neuronal properties that allow populations of spinal cord neurons to control muscles responsible for limb movements and posture control. By integrating data from many new approaches, this text demonstrates how spinal cord circuits operate under a variety conditions and explores the new and exciting developments that are being made in motor neurobiology of the spinal cord. It also elucidates concepts and principles relevant to function and structure throughout the nervous system and presents information about changes induced by injury and disease.
Foundations of Neuroscience
Author: Casey Henley
Publisher:
ISBN:
Category : Biology
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Biology
Languages : en
Pages :
Book Description
Motor Control
Author: Frederic Danion, PhD
Publisher: Oxford University Press
ISBN: 0195395271
Category : Medical
Languages : en
Pages : 536
Book Description
Motor control has established itself as an area of scientific research characterized by a multi-disciplinary approach. Scientists working in the area of control of voluntary movements come from different backgrounds including but not limited to physiology, physics, psychology, mathematics, neurology, physical therapy, computer science, robotics, and engineering. One of the factors slowing progress in the area has been the lack of communication among researchers representing all these disciplines. A major objective of the current book is to overcome this deficiency and to promote cooperation and mutual understanding among researchers addressing different aspects of the complex phenomenon of motor coordination. The book offers a collection of chapters written by the most prominent researchers in the field. Despite the variety of approaches and methods, all the chapters are united by a common goal: To understand how the central nervous system controls and coordinates natural voluntary movements. This book will be appreciated as a major reference by researchers working in all the subfields that form motor control. It can also be used as a supplementary reading book for graduate courses in such fields as kinesiology, physiology, biomechanics, psychology, robotics, and movement disorders.In one concise volume, Motor Control presents the diversity of the research performed to understand human movement. Deftly organized into 6 primary sections, the editors, Dr Frederic Danion and Dr Mark Latash, have invited the who's who of specialists to write on: MotorControl: Control of a Complex; Cortical Mechanisms of Motor Control; Lessons from Biomechanics; Lessons from Motor Learning and Using Tools; Lessons from Studies of Aging and MotorDisorders; and Lessons from RoboticsMotor Control will quickly become the go-to reference for researchers in this growing field. Researchers from mechanics and engineering to psychology and neurophysiology, as well as clinicians working in motor disorders and rehabilitation, will be equally interested in the pages contained herein.
Publisher: Oxford University Press
ISBN: 0195395271
Category : Medical
Languages : en
Pages : 536
Book Description
Motor control has established itself as an area of scientific research characterized by a multi-disciplinary approach. Scientists working in the area of control of voluntary movements come from different backgrounds including but not limited to physiology, physics, psychology, mathematics, neurology, physical therapy, computer science, robotics, and engineering. One of the factors slowing progress in the area has been the lack of communication among researchers representing all these disciplines. A major objective of the current book is to overcome this deficiency and to promote cooperation and mutual understanding among researchers addressing different aspects of the complex phenomenon of motor coordination. The book offers a collection of chapters written by the most prominent researchers in the field. Despite the variety of approaches and methods, all the chapters are united by a common goal: To understand how the central nervous system controls and coordinates natural voluntary movements. This book will be appreciated as a major reference by researchers working in all the subfields that form motor control. It can also be used as a supplementary reading book for graduate courses in such fields as kinesiology, physiology, biomechanics, psychology, robotics, and movement disorders.In one concise volume, Motor Control presents the diversity of the research performed to understand human movement. Deftly organized into 6 primary sections, the editors, Dr Frederic Danion and Dr Mark Latash, have invited the who's who of specialists to write on: MotorControl: Control of a Complex; Cortical Mechanisms of Motor Control; Lessons from Biomechanics; Lessons from Motor Learning and Using Tools; Lessons from Studies of Aging and MotorDisorders; and Lessons from RoboticsMotor Control will quickly become the go-to reference for researchers in this growing field. Researchers from mechanics and engineering to psychology and neurophysiology, as well as clinicians working in motor disorders and rehabilitation, will be equally interested in the pages contained herein.
Cognitive Changes of the Aging Brain
Author: Kenneth M. Heilman
Publisher: Cambridge University Press
ISBN: 1108453600
Category : Medical
Languages : en
Pages : 331
Book Description
Examines the alterations of cognition, perception, and behavior that occur with healthy brain aging, their mechanisms, and their management.
Publisher: Cambridge University Press
ISBN: 1108453600
Category : Medical
Languages : en
Pages : 331
Book Description
Examines the alterations of cognition, perception, and behavior that occur with healthy brain aging, their mechanisms, and their management.
Sensorimotor Control
Author: Reinhard Dengler
Publisher: IOS Press
ISBN: 9781586030810
Category : Medical
Languages : en
Pages : 240
Book Description
Despite the intensive experimental and theoretical studies for over a century, the general processes involved in neural control of pasture and movement, in learning of motor behaviour in healthy subjects and in adaptation in pathology were and remain a challenging problems for the scientists in the field of sensorimotor control. The book is the outcome of the Advanced Research Workshop Sensorimotor Control, where the focus was on the state and the perspectives of the study in the field.
Publisher: IOS Press
ISBN: 9781586030810
Category : Medical
Languages : en
Pages : 240
Book Description
Despite the intensive experimental and theoretical studies for over a century, the general processes involved in neural control of pasture and movement, in learning of motor behaviour in healthy subjects and in adaptation in pathology were and remain a challenging problems for the scientists in the field of sensorimotor control. The book is the outcome of the Advanced Research Workshop Sensorimotor Control, where the focus was on the state and the perspectives of the study in the field.
Higher-order Motor Disorders
Author: H.-J. Freund
Publisher: Oxford University Press, USA
ISBN: 9780198525769
Category : Medical
Languages : en
Pages : 507
Book Description
This is the first book to offer a comprehensive overview of higher-order motor disorders. It introduces new concepts emerging from basic neurosciences and shows how they have impacted on the field of cognitive motor control and led to new vistas for the understanding of Higher-order Motor Disorders far beyond the traditional field of topological diagnosis. It describes in detail a wide range of clinical disorders including those of bimanual co-ordination, apraxia and sensorimotor transformation deficits, motor neglect, anarchic hand syndrome, imitation and utilisation behaviours, action motivational and action monitoring disorders, as well as new approaches to motor cortex plasticity and reorganisation and rehalibitation of complex movement problems. The book reviews the topic, starting with a description of the neuroanatomical, neurobiological and cognitive basis of normal motor behaviours, before moving on to cover the clinical features of the disordered states. The final chapters cover the issues of plastcity and recovery, pharmacological treatments and rehabilitation. This volume will stimulate research and foster new insights into cognitive and motivational motor disorders. With expert contributions from the major international centres in Europe and the Americas his book gives a truly new framework for a complex and confusing field.
Publisher: Oxford University Press, USA
ISBN: 9780198525769
Category : Medical
Languages : en
Pages : 507
Book Description
This is the first book to offer a comprehensive overview of higher-order motor disorders. It introduces new concepts emerging from basic neurosciences and shows how they have impacted on the field of cognitive motor control and led to new vistas for the understanding of Higher-order Motor Disorders far beyond the traditional field of topological diagnosis. It describes in detail a wide range of clinical disorders including those of bimanual co-ordination, apraxia and sensorimotor transformation deficits, motor neglect, anarchic hand syndrome, imitation and utilisation behaviours, action motivational and action monitoring disorders, as well as new approaches to motor cortex plasticity and reorganisation and rehalibitation of complex movement problems. The book reviews the topic, starting with a description of the neuroanatomical, neurobiological and cognitive basis of normal motor behaviours, before moving on to cover the clinical features of the disordered states. The final chapters cover the issues of plastcity and recovery, pharmacological treatments and rehabilitation. This volume will stimulate research and foster new insights into cognitive and motivational motor disorders. With expert contributions from the major international centres in Europe and the Americas his book gives a truly new framework for a complex and confusing field.