Neural Networks with R

Neural Networks with R PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788399412
Category : Computers
Languages : en
Pages : 264

Get Book Here

Book Description
Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.

Neural Networks with R

Neural Networks with R PDF Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 1788399412
Category : Computers
Languages : en
Pages : 264

Get Book Here

Book Description
Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.

Supervised Machine Learning for Text Analysis in R

Supervised Machine Learning for Text Analysis in R PDF Author: Emil Hvitfeldt
Publisher: CRC Press
ISBN: 1000461971
Category : Computers
Languages : en
Pages : 402

Get Book Here

Book Description
Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

Deep Learning with R

Deep Learning with R PDF Author: François Chollet
Publisher: Simon and Schuster
ISBN: 1638351635
Category : Computers
Languages : en
Pages : 528

Get Book Here

Book Description
Summary Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples. Continue your journey into the world of deep learning with Deep Learning with R in Motion, a practical, hands-on video course available exclusively at Manning.com (www.manning.com/livevideo/deep-​learning-with-r-in-motion). Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. Deep-learning systems now enable previously impossible smart applications, revolutionizing image recognition and natural-language processing, and identifying complex patterns in data. The Keras deep-learning library provides data scientists and developers working in R a state-of-the-art toolset for tackling deep-learning tasks. About the Book Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. Initially written for Python as Deep Learning with Python by Keras creator and Google AI researcher François Chollet and adapted for R by RStudio founder J. J. Allaire, this book builds your understanding of deep learning through intuitive explanations and practical examples. You'll practice your new skills with R-based applications in computer vision, natural-language processing, and generative models. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image classification and generation Deep learning for text and sequences About the Reader You'll need intermediate R programming skills. No previous experience with machine learning or deep learning is assumed. About the Authors François Chollet is a deep-learning researcher at Google and the author of the Keras library. J.J. Allaire is the founder of RStudio and the author of the R interfaces to TensorFlow and Keras. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions

Neural Networks

Neural Networks PDF Author: Raul Rojas
Publisher: Springer Science & Business Media
ISBN: 3642610684
Category : Computers
Languages : en
Pages : 511

Get Book Here

Book Description
Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.

R Deep Learning Projects

R Deep Learning Projects PDF Author: Yuxi (Hayden) Liu
Publisher: Packt Publishing Ltd
ISBN: 1788474554
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
5 real-world projects to help you master deep learning concepts Key Features Master the different deep learning paradigms and build real-world projects related to text generation, sentiment analysis, fraud detection, and more Get to grips with R's impressive range of Deep Learning libraries and frameworks such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec Practical projects that show you how to implement different neural networks with helpful tips, tricks, and best practices Book Description R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. Deep Learning, as we all know, is one of the trending topics today, and is finding practical applications in a lot of domains. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text generation, and sentiment analysis. You'll learn how to train effective neural networks in R—including convolutional neural networks, recurrent neural networks, and LSTMs—and apply them in practical scenarios. The book also highlights how neural networks can be trained using GPU capabilities. You will use popular R libraries and packages—such as MXNetR, H2O, deepnet, and more—to implement the projects. By the end of this book, you will have a better understanding of deep learning concepts and techniques and how to use them in a practical setting. What you will learn Instrument Deep Learning models with packages such as deepnet, MXNetR, Tensorflow, H2O, Keras, and text2vec Apply neural networks to perform handwritten digit recognition using MXNet Get the knack of CNN models, Neural Network API, Keras, and TensorFlow for traffic sign classification -Implement credit card fraud detection with Autoencoders Master reconstructing images using variational autoencoders Wade through sentiment analysis from movie reviews Run from past to future and vice versa with bidirectional Long Short-Term Memory (LSTM) networks Understand the applications of Autoencoder Neural Networks in clustering and dimensionality reduction Who this book is for Machine learning professionals and data scientists looking to master deep learning by implementing practical projects in R will find this book a useful resource. A knowledge of R programming and the basic concepts of deep learning is required to get the best out of this book.

Neural Networks for Time Series Forecasting with R

Neural Networks for Time Series Forecasting with R PDF Author: N. Lewis
Publisher:
ISBN: 9781544752952
Category :
Languages : en
Pages : 238

Get Book Here

Book Description
Finally, A Blueprint for Neural Network Time Series Forecasting with R! Neural Networks for Time Series Forecasting with R offers a practical tutorial that uses hands-on examples to step through real-world applications using clear and practical case studies. Through this process it takes you on a gentle, fun and unhurried journey to creating neural network models for time series forecasting with R. Whether you are new to data science or a veteran, this book offers a powerful set of tools for quickly and easily gaining insight from your data using R. NO EXPERIENCE REQUIRED: This book uses plain language rather than a ton of equations; I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to try neural networks for time series forecasting for yourself. YOUR PERSONAL BLUE PRINT: Through a simple to follow step by step process, you will learn how to build neural network time series forecasting models using R. Once you have mastered the process, it will be easy for you to translate your knowledge into your own powerful applications. THIS BOOK IS FOR YOU IF YOU WANT: Explanations rather than mathematical derivation Practical illustrations that use real data. Illustrations to deepen your understanding. Worked examples in R you can easily follow and immediately implement. Ideas you can actually use and try on your own data. TAKE THE SHORTCUT: This guide was written for people just like you. Individuals who want to get up to speed as quickly as possible. In this book you will learn how to: YOU'LL LEARN HOW TO: Unleash the power of Long Short-Term Memory Neural Networks. Develop hands on skills using the Gated Recurrent Unit Neural Network. Design successful applications with Recurrent Neural Networks. Deploy Jordan and Elman Partially Recurrent Neural Networks. Adapt Deep Neural Networks for Time Series Forecasting. Master the General Method of Data Handling Type Neural Networks. For each neural network model, every step in the process is detailed, from preparing the data for analysis, to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks. Using plain language, this book offers a simple, intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using R. Everything you need to get started is contained within this book. Neural Networks for Time Series Forecasting with R is your very own hands on practical, tactical, easy to follow guide to mastery. Buy this book today and accelerate your progress!

Deep Learning with R

Deep Learning with R PDF Author: Abhijit Ghatak
Publisher: Springer
ISBN: 9811358508
Category : Computers
Languages : en
Pages : 259

Get Book Here

Book Description
Deep Learning with R introduces deep learning and neural networks using the R programming language. The book builds on the understanding of the theoretical and mathematical constructs and enables the reader to create applications on computer vision, natural language processing and transfer learning. The book starts with an introduction to machine learning and moves on to describe the basic architecture, different activation functions, forward propagation, cross-entropy loss and backward propagation of a simple neural network. It goes on to create different code segments to construct deep neural networks. It discusses in detail the initialization of network parameters, optimization techniques, and some of the common issues surrounding neural networks such as dealing with NaNs and the vanishing/exploding gradient problem. Advanced variants of multilayered perceptrons namely, convolutional neural networks and sequence models are explained, followed by application to different use cases. The book makes extensive use of the Keras and TensorFlow frameworks.

Make Your Own Neural Network

Make Your Own Neural Network PDF Author: Tariq Rashid
Publisher: Createspace Independent Publishing Platform
ISBN: 9781530826605
Category : Application software
Languages : en
Pages : 0

Get Book Here

Book Description
This book is for anyone who wants to understand what neural network[s] are. It's for anyone who wants to make and use their own. And it's for anyone who wants to appreciate the fairly easy but exciting mathematical ideas that are at the core of how they work. This guide is not aimed at experts in mathematics or computer science. You won't need any special knowledge or mathematical ability beyond school maths [sic] ... Teachers can use this guide as a particularly gentle explanation of neural networks and their implementation to enthuse and excite students making their very own learning artificial intelligence with only a few lines of programming language code. The code has been tested to work with a Raspberry Pi, a small inexpensive computer very popular in schools and with young students"--(page 6, Introduction)

FPGA Implementations of Neural Networks

FPGA Implementations of Neural Networks PDF Author: Amos R. Omondi
Publisher: Springer Science & Business Media
ISBN: 0387284877
Category : Technology & Engineering
Languages : en
Pages : 365

Get Book Here

Book Description
During the 1980s and early 1990s there was signi?cant work in the design and implementation of hardware neurocomputers. Nevertheless, most of these efforts may be judged to have been unsuccessful: at no time have have ha- ware neurocomputers been in wide use. This lack of success may be largely attributed to the fact that earlier work was almost entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such niche - eas this technology was never suf?ciently developed or competitive enough to justify large-scale adoption. On the other hand, gate-arrays of the period m- tioned were never large enough nor fast enough for serious arti?cial-neur- network (ANN) applications. But technology has now improved: the capacity and performance of current FPGAs are such that they present a much more realistic alternative. Consequently neurocomputers based on FPGAs are now a much more practical proposition than they have been in the past. This book summarizes some work towards this goal and consists of 12 papers that were selected, after review, from a number of submissions. The book is nominally divided into three parts: Chapters 1 through 4 deal with foundational issues; Chapters 5 through 11 deal with a variety of implementations; and Chapter 12 looks at the lessons learned from a large-scale project and also reconsiders design issues in light of current and future technology.

Introduction to Deep Learning Using R

Introduction to Deep Learning Using R PDF Author: Taweh Beysolow II
Publisher: Apress
ISBN: 1484227344
Category : Business & Economics
Languages : en
Pages : 240

Get Book Here

Book Description
Understand deep learning, the nuances of its different models, and where these models can be applied. The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools. What You'll Learn Understand the intuition and mathematics that power deep learning models Utilize various algorithms using the R programming language and its packages Use best practices for experimental design and variable selection Practice the methodology to approach and effectively solve problems as a data scientist Evaluate the effectiveness of algorithmic solutions and enhance their predictive power Who This Book Is For Students, researchers, and data scientists who are familiar with programming using R. This book also is also of use for those who wish to learn how to appropriately deploy these algorithms in applications where they would be most useful.