Author: Paul D. McNelis
Publisher: Academic Press
ISBN: 0124859674
Category : Business & Economics
Languages : en
Pages : 262
Book Description
This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website
Neural Networks in Finance
Author: Paul D. McNelis
Publisher: Academic Press
ISBN: 0124859674
Category : Business & Economics
Languages : en
Pages : 262
Book Description
This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website
Publisher: Academic Press
ISBN: 0124859674
Category : Business & Economics
Languages : en
Pages : 262
Book Description
This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website
Artificial Neural Networks in Finance and Manufacturing
Author: Kamruzzaman, Joarder
Publisher: IGI Global
ISBN: 1591406722
Category : Computers
Languages : en
Pages : 298
Book Description
"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.
Publisher: IGI Global
ISBN: 1591406722
Category : Computers
Languages : en
Pages : 298
Book Description
"This book presents a variety of practical applications of neural networks in two important domains of economic activity: finance and manufacturing"--Provided by publisher.
Neural Networks in Finance and Investing
Author: Robert R. Trippi
Publisher: Irwin Professional Publishing
ISBN:
Category : Business & Economics
Languages : en
Pages : 872
Book Description
This completely updated version of the classic first edition offers a wealth of new material reflecting the latest developments in teh field. For investment professionals seeking to maximize this exciting new technology, this handbook is the definitive information source.
Publisher: Irwin Professional Publishing
ISBN:
Category : Business & Economics
Languages : en
Pages : 872
Book Description
This completely updated version of the classic first edition offers a wealth of new material reflecting the latest developments in teh field. For investment professionals seeking to maximize this exciting new technology, this handbook is the definitive information source.
Machine Learning in Finance
Author: Matthew F. Dixon
Publisher: Springer Nature
ISBN: 3030410684
Category : Business & Economics
Languages : en
Pages : 565
Book Description
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Publisher: Springer Nature
ISBN: 3030410684
Category : Business & Economics
Languages : en
Pages : 565
Book Description
This book introduces machine learning methods in finance. It presents a unified treatment of machine learning and various statistical and computational disciplines in quantitative finance, such as financial econometrics and discrete time stochastic control, with an emphasis on how theory and hypothesis tests inform the choice of algorithm for financial data modeling and decision making. With the trend towards increasing computational resources and larger datasets, machine learning has grown into an important skillset for the finance industry. This book is written for advanced graduate students and academics in financial econometrics, mathematical finance and applied statistics, in addition to quants and data scientists in the field of quantitative finance. Machine Learning in Finance: From Theory to Practice is divided into three parts, each part covering theory and applications. The first presents supervised learning for cross-sectional data from both a Bayesian and frequentist perspective. The more advanced material places a firm emphasis on neural networks, including deep learning, as well as Gaussian processes, with examples in investment management and derivative modeling. The second part presents supervised learning for time series data, arguably the most common data type used in finance with examples in trading, stochastic volatility and fixed income modeling. Finally, the third part presents reinforcement learning and its applications in trading, investment and wealth management. Python code examples are provided to support the readers' understanding of the methodologies and applications. The book also includes more than 80 mathematical and programming exercises, with worked solutions available to instructors. As a bridge to research in this emergent field, the final chapter presents the frontiers of machine learning in finance from a researcher's perspective, highlighting how many well-known concepts in statistical physics are likely to emerge as important methodologies for machine learning in finance.
Neural Networks in the Capital Markets
Author: Apostolos-Paul Refenes
Publisher: Wiley
ISBN: 9780471943648
Category : Business & Economics
Languages : en
Pages : 392
Book Description
Based on original papers which represent new and significant research, developments and applications in finance and investment. The author takes a pragmatic view of neural networks, treating them as computationally equivalent to well-understood, non-parametric inference methods in decision science. The author also makes comparisons with established techniques where appropriate.
Publisher: Wiley
ISBN: 9780471943648
Category : Business & Economics
Languages : en
Pages : 392
Book Description
Based on original papers which represent new and significant research, developments and applications in finance and investment. The author takes a pragmatic view of neural networks, treating them as computationally equivalent to well-understood, non-parametric inference methods in decision science. The author also makes comparisons with established techniques where appropriate.
Artificial Intelligence in Finance
Author: Yves Hilpisch
Publisher: "O'Reilly Media, Inc."
ISBN: 1492055387
Category : Business & Economics
Languages : en
Pages : 478
Book Description
The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about
Publisher: "O'Reilly Media, Inc."
ISBN: 1492055387
Category : Business & Economics
Languages : en
Pages : 478
Book Description
The widespread adoption of AI and machine learning is revolutionizing many industries today. Once these technologies are combined with the programmatic availability of historical and real-time financial data, the financial industry will also change fundamentally. With this practical book, you'll learn how to use AI and machine learning to discover statistical inefficiencies in financial markets and exploit them through algorithmic trading. Author Yves Hilpisch shows practitioners, students, and academics in both finance and data science practical ways to apply machine learning and deep learning algorithms to finance. Thanks to lots of self-contained Python examples, you'll be able to replicate all results and figures presented in the book. In five parts, this guide helps you: Learn central notions and algorithms from AI, including recent breakthroughs on the way to artificial general intelligence (AGI) and superintelligence (SI) Understand why data-driven finance, AI, and machine learning will have a lasting impact on financial theory and practice Apply neural networks and reinforcement learning to discover statistical inefficiencies in financial markets Identify and exploit economic inefficiencies through backtesting and algorithmic trading--the automated execution of trading strategies Understand how AI will influence the competitive dynamics in the financial industry and what the potential emergence of a financial singularity might bring about
Neural Smithing
Author: Russell Reed
Publisher: MIT Press
ISBN: 0262181908
Category : Computers
Languages : en
Pages : 359
Book Description
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.
Publisher: MIT Press
ISBN: 0262181908
Category : Computers
Languages : en
Pages : 359
Book Description
Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.
Financial Prediction Using Neural Networks
Author: Joseph S. Zirilli
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 168
Book Description
Focusing on approaches to performing trend analysis through the use of neural nets, this book comparess the results of experiments on various types of markets, and includes a review of current work in the area. It appeals to students in both neural computing and finance as well as to financial analysts and academic and professional researchers in the field of neural network applications.
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 168
Book Description
Focusing on approaches to performing trend analysis through the use of neural nets, this book comparess the results of experiments on various types of markets, and includes a review of current work in the area. It appeals to students in both neural computing and finance as well as to financial analysts and academic and professional researchers in the field of neural network applications.
Machine Learning for Finance
Author: Jannes Klaas
Publisher:
ISBN: 9781789136364
Category : Computers
Languages : en
Pages : 456
Book Description
Plan and build useful machine learning systems for financial services, with full working Python code Key Features Build machine learning systems that will be useful across the financial services industry Discover how machine learning can solve finance industry challenges Gain the machine learning insights and skills fintech companies value most Book Description Machine learning skills are essential for anybody working in financial data analysis. Machine Learning for Finance shows you how to build machine learning models for use in financial services organizations. It shows you how to work with all the key machine learning models, from simple regression to advanced neural networks. You will see how to use machine learning to automate manual tasks, identify and address systemic bias, and find new insights and patterns hidden in available data. Machine Learning for Finance encourages and equips you to find new ways to use data to serve an organization's business goals. Broad in scope yet deeply practical in approach, Machine Learning for Finance will help you to apply machine learning in all parts of a financial organization's infrastructure. If you work or plan to work in fintech, and want to gain one of the most valuable skills in the sector today, this book is for you. What you will learn Practical machine learning for the finance sector Build machine learning systems that support the goals of financial organizations Think creatively about problems and how machine learning can solve them Identify and reduce sources of bias from machine learning models Apply machine learning to structured data, natural language, photographs, and written text related to finance Use machine learning to detect fraud, forecast financial trends, analyze customer sentiments, and more Implement heuristic baselines, time series, generative models, and reinforcement learning in Python, scikit-learn, Keras, and TensorFlow Who this book is for Machine Learning for Finance is for financial professionals who want to develop and apply machine learning skills, and for students entering the field. You should be comfortable with Python and the basic data science stack, such as NumPy, pandas, and Matplotlib, to get the most out of this book.
Publisher:
ISBN: 9781789136364
Category : Computers
Languages : en
Pages : 456
Book Description
Plan and build useful machine learning systems for financial services, with full working Python code Key Features Build machine learning systems that will be useful across the financial services industry Discover how machine learning can solve finance industry challenges Gain the machine learning insights and skills fintech companies value most Book Description Machine learning skills are essential for anybody working in financial data analysis. Machine Learning for Finance shows you how to build machine learning models for use in financial services organizations. It shows you how to work with all the key machine learning models, from simple regression to advanced neural networks. You will see how to use machine learning to automate manual tasks, identify and address systemic bias, and find new insights and patterns hidden in available data. Machine Learning for Finance encourages and equips you to find new ways to use data to serve an organization's business goals. Broad in scope yet deeply practical in approach, Machine Learning for Finance will help you to apply machine learning in all parts of a financial organization's infrastructure. If you work or plan to work in fintech, and want to gain one of the most valuable skills in the sector today, this book is for you. What you will learn Practical machine learning for the finance sector Build machine learning systems that support the goals of financial organizations Think creatively about problems and how machine learning can solve them Identify and reduce sources of bias from machine learning models Apply machine learning to structured data, natural language, photographs, and written text related to finance Use machine learning to detect fraud, forecast financial trends, analyze customer sentiments, and more Implement heuristic baselines, time series, generative models, and reinforcement learning in Python, scikit-learn, Keras, and TensorFlow Who this book is for Machine Learning for Finance is for financial professionals who want to develop and apply machine learning skills, and for students entering the field. You should be comfortable with Python and the basic data science stack, such as NumPy, pandas, and Matplotlib, to get the most out of this book.
Big Data and Machine Learning in Quantitative Investment
Author: Tony Guida
Publisher: John Wiley & Sons
ISBN: 1119522196
Category : Business & Economics
Languages : en
Pages : 308
Book Description
Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.
Publisher: John Wiley & Sons
ISBN: 1119522196
Category : Business & Economics
Languages : en
Pages : 308
Book Description
Get to know the ‘why’ and ‘how’ of machine learning and big data in quantitative investment Big Data and Machine Learning in Quantitative Investment is not just about demonstrating the maths or the coding. Instead, it’s a book by practitioners for practitioners, covering the questions of why and how of applying machine learning and big data to quantitative finance. The book is split into 13 chapters, each of which is written by a different author on a specific case. The chapters are ordered according to the level of complexity; beginning with the big picture and taxonomy, moving onto practical applications of machine learning and finally finishing with innovative approaches using deep learning. • Gain a solid reason to use machine learning • Frame your question using financial markets laws • Know your data • Understand how machine learning is becoming ever more sophisticated Machine learning and big data are not a magical solution, but appropriately applied, they are extremely effective tools for quantitative investment — and this book shows you how.