Author: Joey Rogers
Publisher: Morgan Kaufmann
ISBN: 9780125931151
Category : Computers
Languages : en
Pages : 326
Book Description
"This book is distinctive in that it implements nodes and links as base objects and then composes them into four different kinds of neural networks. Roger's writing is clear....The text and code are both quite readable. Overall, this book will be useful to anyone who wants to implement neural networks in C++ (and, to a lesser extent, in other object-oriented programming languages.)...I recommend this book to anyone who wants to implement neural networks in C++."--D.L. Chester, Newark, Delaware in COMPUTING REVIEWSObject-Oriented Neural Networks in C++ is a valuable tool for anyone who wants to understand, implement, or utilize neural networks. This book/disk package provides the reader with a foundation from which any neural network architecture can beconstructed. The author has employed object-oriented design and object-oriented programming concepts to develop a set of foundation neural network classes, and shows how these classes can be used to implement a variety of neural network architectures with a great deal of ease and flexibility. A wealth of neural network formulas (with standardized notation), object code implementations, and examples are provided to demonstrate the object-oriented approach to neural network architectures and to facilitatethe development of new neural network architectures. This is the first book to take full advantage of the reusable nature of neural network classes. Key Features * Describes how to use the classes provided to implement a variety of neural network architectures including ADALINE, Backpropagation, Self-Organizing, and BAM * Provides a set of reusable neural network classes, created in C++, capable of implementing any neural network architecture * Includes an IBM disk of the source code for the classes, which is platform independent * Includes an IBM disk with C++ programs described in the book
Object-Oriented Neural Networks in C++
Author: Joey Rogers
Publisher: Morgan Kaufmann
ISBN: 9780125931151
Category : Computers
Languages : en
Pages : 326
Book Description
"This book is distinctive in that it implements nodes and links as base objects and then composes them into four different kinds of neural networks. Roger's writing is clear....The text and code are both quite readable. Overall, this book will be useful to anyone who wants to implement neural networks in C++ (and, to a lesser extent, in other object-oriented programming languages.)...I recommend this book to anyone who wants to implement neural networks in C++."--D.L. Chester, Newark, Delaware in COMPUTING REVIEWSObject-Oriented Neural Networks in C++ is a valuable tool for anyone who wants to understand, implement, or utilize neural networks. This book/disk package provides the reader with a foundation from which any neural network architecture can beconstructed. The author has employed object-oriented design and object-oriented programming concepts to develop a set of foundation neural network classes, and shows how these classes can be used to implement a variety of neural network architectures with a great deal of ease and flexibility. A wealth of neural network formulas (with standardized notation), object code implementations, and examples are provided to demonstrate the object-oriented approach to neural network architectures and to facilitatethe development of new neural network architectures. This is the first book to take full advantage of the reusable nature of neural network classes. Key Features * Describes how to use the classes provided to implement a variety of neural network architectures including ADALINE, Backpropagation, Self-Organizing, and BAM * Provides a set of reusable neural network classes, created in C++, capable of implementing any neural network architecture * Includes an IBM disk of the source code for the classes, which is platform independent * Includes an IBM disk with C++ programs described in the book
Publisher: Morgan Kaufmann
ISBN: 9780125931151
Category : Computers
Languages : en
Pages : 326
Book Description
"This book is distinctive in that it implements nodes and links as base objects and then composes them into four different kinds of neural networks. Roger's writing is clear....The text and code are both quite readable. Overall, this book will be useful to anyone who wants to implement neural networks in C++ (and, to a lesser extent, in other object-oriented programming languages.)...I recommend this book to anyone who wants to implement neural networks in C++."--D.L. Chester, Newark, Delaware in COMPUTING REVIEWSObject-Oriented Neural Networks in C++ is a valuable tool for anyone who wants to understand, implement, or utilize neural networks. This book/disk package provides the reader with a foundation from which any neural network architecture can beconstructed. The author has employed object-oriented design and object-oriented programming concepts to develop a set of foundation neural network classes, and shows how these classes can be used to implement a variety of neural network architectures with a great deal of ease and flexibility. A wealth of neural network formulas (with standardized notation), object code implementations, and examples are provided to demonstrate the object-oriented approach to neural network architectures and to facilitatethe development of new neural network architectures. This is the first book to take full advantage of the reusable nature of neural network classes. Key Features * Describes how to use the classes provided to implement a variety of neural network architectures including ADALINE, Backpropagation, Self-Organizing, and BAM * Provides a set of reusable neural network classes, created in C++, capable of implementing any neural network architecture * Includes an IBM disk of the source code for the classes, which is platform independent * Includes an IBM disk with C++ programs described in the book
Neural Networks and Deep Learning
Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319944630
Category : Computers
Languages : en
Pages : 512
Book Description
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Publisher: Springer
ISBN: 3319944630
Category : Computers
Languages : en
Pages : 512
Book Description
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.
Practical Neural Network Recipes in C++
Author: Timothy Masters
Publisher: Elsevier
ISBN: 9780124790414
Category : C (Computer program language)
Languages : en
Pages : 493
Book Description
Publisher: Elsevier
ISBN: 9780124790414
Category : C (Computer program language)
Languages : en
Pages : 493
Book Description
Pattern Recognition with Neural Networks in C++
Author: Abhijit S. Pandya
Publisher: CRC Press
ISBN: 9780849394621
Category : Computers
Languages : en
Pages : 434
Book Description
The addition of artificial neural network computing to traditional pattern recognition has given rise to a new, different, and more powerful methodology that is presented in this interesting book. This is a practical guide to the application of artificial neural networks. Geared toward the practitioner, Pattern Recognition with Neural Networks in C++ covers pattern classification and neural network approaches within the same framework. Through the book's presentation of underlying theory and numerous practical examples, readers gain an understanding that will allow them to make judicious design choices rendering neural application predictable and effective. The book provides an intuitive explanation of each method for each network paradigm. This discussion is supported by a rigorous mathematical approach where necessary. C++ has emerged as a rich and descriptive means by which concepts, models, or algorithms can be precisely described. For many of the neural network models discussed, C++ programs are presented for the actual implementation. Pictorial diagrams and in-depth discussions explain each topic. Necessary derivative steps for the mathematical models are included so that readers can incorporate new ideas into their programs as the field advances with new developments. For each approach, the authors clearly state the known theoretical results, the known tendencies of the approach, and their recommendations for getting the best results from the method. The material covered in the book is accessible to working engineers with little or no explicit background in neural networks. However, the material is presented in sufficient depth so that those with prior knowledge will find this book beneficial. Pattern Recognition with Neural Networks in C++ is also suitable for courses in neural networks at an advanced undergraduate or graduate level. This book is valuable for academic as well as practical research.
Publisher: CRC Press
ISBN: 9780849394621
Category : Computers
Languages : en
Pages : 434
Book Description
The addition of artificial neural network computing to traditional pattern recognition has given rise to a new, different, and more powerful methodology that is presented in this interesting book. This is a practical guide to the application of artificial neural networks. Geared toward the practitioner, Pattern Recognition with Neural Networks in C++ covers pattern classification and neural network approaches within the same framework. Through the book's presentation of underlying theory and numerous practical examples, readers gain an understanding that will allow them to make judicious design choices rendering neural application predictable and effective. The book provides an intuitive explanation of each method for each network paradigm. This discussion is supported by a rigorous mathematical approach where necessary. C++ has emerged as a rich and descriptive means by which concepts, models, or algorithms can be precisely described. For many of the neural network models discussed, C++ programs are presented for the actual implementation. Pictorial diagrams and in-depth discussions explain each topic. Necessary derivative steps for the mathematical models are included so that readers can incorporate new ideas into their programs as the field advances with new developments. For each approach, the authors clearly state the known theoretical results, the known tendencies of the approach, and their recommendations for getting the best results from the method. The material covered in the book is accessible to working engineers with little or no explicit background in neural networks. However, the material is presented in sufficient depth so that those with prior knowledge will find this book beneficial. Pattern Recognition with Neural Networks in C++ is also suitable for courses in neural networks at an advanced undergraduate or graduate level. This book is valuable for academic as well as practical research.
Neural Networks in C++
Author: Adam Blum
Publisher: Wiley
ISBN: 9780471552017
Category : Computers
Languages : en
Pages : 228
Book Description
Neural Networks in C++ An Object-Oriented Framework for Building Connectionist Systems Extremely useful, this valuable guide concentrates on the practical side of building neural network applications. Written with a wealth of useful examples in C++, the book provides you with the nuts-and-bolts guidelines for hands-on development of real-world connectionist systems. Neural Networks in C++ also: Includes a complete C++ class library especially designed for neural network applications Fully covers three major application areas of neural network programming—image recognition, text processing, and forecasting Provides introductory material on neural networks Covers the basics on an object-oriented framework for connectionist systems
Publisher: Wiley
ISBN: 9780471552017
Category : Computers
Languages : en
Pages : 228
Book Description
Neural Networks in C++ An Object-Oriented Framework for Building Connectionist Systems Extremely useful, this valuable guide concentrates on the practical side of building neural network applications. Written with a wealth of useful examples in C++, the book provides you with the nuts-and-bolts guidelines for hands-on development of real-world connectionist systems. Neural Networks in C++ also: Includes a complete C++ class library especially designed for neural network applications Fully covers three major application areas of neural network programming—image recognition, text processing, and forecasting Provides introductory material on neural networks Covers the basics on an object-oriented framework for connectionist systems
Weakly Connected Neural Networks
Author: Frank C. Hoppensteadt
Publisher: Springer Science & Business Media
ISBN: 1461218284
Category : Mathematics
Languages : en
Pages : 404
Book Description
Devoted to local and global analysis of weakly connected systems with applications to neurosciences, this book uses bifurcation theory and canonical models as the major tools of analysis. It presents a systematic and well motivated development of both weakly connected system theory and mathematical neuroscience, addressing bifurcations in neuron and brain dynamics, synaptic organisations of the brain, and the nature of neural codes. The authors present classical results together with the most recent developments in the field, making this a useful reference for researchers and graduate students in various branches of mathematical neuroscience.
Publisher: Springer Science & Business Media
ISBN: 1461218284
Category : Mathematics
Languages : en
Pages : 404
Book Description
Devoted to local and global analysis of weakly connected systems with applications to neurosciences, this book uses bifurcation theory and canonical models as the major tools of analysis. It presents a systematic and well motivated development of both weakly connected system theory and mathematical neuroscience, addressing bifurcations in neuron and brain dynamics, synaptic organisations of the brain, and the nature of neural codes. The authors present classical results together with the most recent developments in the field, making this a useful reference for researchers and graduate students in various branches of mathematical neuroscience.
Hands-On Neural Network Programming with C#
Author: Matt R. Cole
Publisher: Packt Publishing Ltd
ISBN: 1789619866
Category : Computers
Languages : en
Pages : 320
Book Description
Create and unleash the power of neural networks by implementing C# and .Net code Key FeaturesGet a strong foundation of neural networks with access to various machine learning and deep learning librariesReal-world case studies illustrating various neural network techniques and architectures used by practitionersCutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many moreBook Description Neural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence. The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks. This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search. Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications. What you will learnUnderstand perceptrons and how to implement them in C#Learn how to train and visualize a neural network using cognitive servicesPerform image recognition for detecting and labeling objects using C# and TensorFlowSharpDetect specific image characteristics such as a face using Accord.NetDemonstrate particle swarm optimization using a simple XOR problem and EncogTrain convolutional neural networks using ConvNetSharpFind optimal parameters for your neural network functions using numeric and heuristic optimization techniques.Who this book is for This book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book
Publisher: Packt Publishing Ltd
ISBN: 1789619866
Category : Computers
Languages : en
Pages : 320
Book Description
Create and unleash the power of neural networks by implementing C# and .Net code Key FeaturesGet a strong foundation of neural networks with access to various machine learning and deep learning librariesReal-world case studies illustrating various neural network techniques and architectures used by practitionersCutting-edge coverage of Deep Networks, optimization algorithms, convolutional networks, autoencoders and many moreBook Description Neural networks have made a surprise comeback in the last few years and have brought tremendous innovation in the world of artificial intelligence. The goal of this book is to provide C# programmers with practical guidance in solving complex computational challenges using neural networks and C# libraries such as CNTK, and TensorFlowSharp. This book will take you on a step-by-step practical journey, covering everything from the mathematical and theoretical aspects of neural networks, to building your own deep neural networks into your applications with the C# and .NET frameworks. This book begins by giving you a quick refresher of neural networks. You will learn how to build a neural network from scratch using packages such as Encog, Aforge, and Accord. You will learn about various concepts and techniques, such as deep networks, perceptrons, optimization algorithms, convolutional networks, and autoencoders. You will learn ways to add intelligent features to your .NET apps, such as facial and motion detection, object detection and labeling, language understanding, knowledge, and intelligent search. Throughout this book, you will be working on interesting demonstrations that will make it easier to implement complex neural networks in your enterprise applications. What you will learnUnderstand perceptrons and how to implement them in C#Learn how to train and visualize a neural network using cognitive servicesPerform image recognition for detecting and labeling objects using C# and TensorFlowSharpDetect specific image characteristics such as a face using Accord.NetDemonstrate particle swarm optimization using a simple XOR problem and EncogTrain convolutional neural networks using ConvNetSharpFind optimal parameters for your neural network functions using numeric and heuristic optimization techniques.Who this book is for This book is for Machine Learning Engineers, Data Scientists, Deep Learning Aspirants and Data Analysts who are now looking to move into advanced machine learning and deep learning with C#. Prior knowledge of machine learning and working experience with C# programming is required to take most out of this book
C++ Neural Networks and Fuzzy Logic
Author: Hayagriva V. Rao
Publisher:
ISBN: 9788170296942
Category : C++ (Computer program language)
Languages : en
Pages : 551
Book Description
Publisher:
ISBN: 9788170296942
Category : C++ (Computer program language)
Languages : en
Pages : 551
Book Description
Programming Neural Networks with Encog 2 in Java
Author: Jeff Heaton
Publisher:
ISBN: 9781604390070
Category : C# (Computer program language)
Languages : en
Pages : 0
Book Description
Encog is an advanced neural network and bot programming framework. This book focuses on using Encog to create a variety of neural network architectures using the Java programming language. Neural network architectures such as feedforward/perceptrons, Hopfield, Elman, Jordan, Radial Basis Function, and Self Organizing maps are all demonstrated. This book also shows how to use Encog to train neural networks using a variety of means. Several propagation techniques, such as back propagation, resilient propagation (RPROP) and the Manhattan update rule are discussed. Additionally, training with a genetic algorithm and simulated annealing is discussed as well. You will also see how to enhance training using techniques such as pruning, hybrid training, Real world examples tie the book together. Pattern recognition applications such as OCR, image and text recognition will be introduced. You will see how to apply time series and forecasting and how to financial markets. All of the Encog neural network components will be demonstrated to show how to use them in your own neural network applications.
Publisher:
ISBN: 9781604390070
Category : C# (Computer program language)
Languages : en
Pages : 0
Book Description
Encog is an advanced neural network and bot programming framework. This book focuses on using Encog to create a variety of neural network architectures using the Java programming language. Neural network architectures such as feedforward/perceptrons, Hopfield, Elman, Jordan, Radial Basis Function, and Self Organizing maps are all demonstrated. This book also shows how to use Encog to train neural networks using a variety of means. Several propagation techniques, such as back propagation, resilient propagation (RPROP) and the Manhattan update rule are discussed. Additionally, training with a genetic algorithm and simulated annealing is discussed as well. You will also see how to enhance training using techniques such as pruning, hybrid training, Real world examples tie the book together. Pattern recognition applications such as OCR, image and text recognition will be introduced. You will see how to apply time series and forecasting and how to financial markets. All of the Encog neural network components will be demonstrated to show how to use them in your own neural network applications.
Deep Learning For Dummies
Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119543045
Category : Computers
Languages : en
Pages : 370
Book Description
Take a deep dive into deep learning Deep learning provides the means for discerning patterns in the data that drive online business and social media outlets. Deep Learning for Dummies gives you the information you need to take the mystery out of the topic—and all of the underlying technologies associated with it. In no time, you’ll make sense of those increasingly confusing algorithms, and find a simple and safe environment to experiment with deep learning. The book develops a sense of precisely what deep learning can do at a high level and then provides examples of the major deep learning application types. Includes sample code Provides real-world examples within the approachable text Offers hands-on activities to make learning easier Shows you how to use Deep Learning more effectively with the right tools This book is perfect for those who want to better understand the basis of the underlying technologies that we use each and every day.
Publisher: John Wiley & Sons
ISBN: 1119543045
Category : Computers
Languages : en
Pages : 370
Book Description
Take a deep dive into deep learning Deep learning provides the means for discerning patterns in the data that drive online business and social media outlets. Deep Learning for Dummies gives you the information you need to take the mystery out of the topic—and all of the underlying technologies associated with it. In no time, you’ll make sense of those increasingly confusing algorithms, and find a simple and safe environment to experiment with deep learning. The book develops a sense of precisely what deep learning can do at a high level and then provides examples of the major deep learning application types. Includes sample code Provides real-world examples within the approachable text Offers hands-on activities to make learning easier Shows you how to use Deep Learning more effectively with the right tools This book is perfect for those who want to better understand the basis of the underlying technologies that we use each and every day.