Author: Anthony Zaknich
Publisher: World Scientific
ISBN: 9814486469
Category : Computers
Languages : en
Pages : 510
Book Description
This book provides a thorough theoretical and practical introduction to the application of neural networks to pattern recognition and intelligent signal processing. It has been tested on students, unfamiliar with neural networks, who were able to pick up enough details to successfully complete their masters or final year undergraduate projects. The text also presents a comprehensive treatment of a class of neural networks called common bandwidth spherical basis function NNs, including the probabilistic NN, the modified probabilistic NN and the general regression NN.
Neural Networks For Intelligent Signal Processing
Author: Anthony Zaknich
Publisher: World Scientific
ISBN: 9814486469
Category : Computers
Languages : en
Pages : 510
Book Description
This book provides a thorough theoretical and practical introduction to the application of neural networks to pattern recognition and intelligent signal processing. It has been tested on students, unfamiliar with neural networks, who were able to pick up enough details to successfully complete their masters or final year undergraduate projects. The text also presents a comprehensive treatment of a class of neural networks called common bandwidth spherical basis function NNs, including the probabilistic NN, the modified probabilistic NN and the general regression NN.
Publisher: World Scientific
ISBN: 9814486469
Category : Computers
Languages : en
Pages : 510
Book Description
This book provides a thorough theoretical and practical introduction to the application of neural networks to pattern recognition and intelligent signal processing. It has been tested on students, unfamiliar with neural networks, who were able to pick up enough details to successfully complete their masters or final year undergraduate projects. The text also presents a comprehensive treatment of a class of neural networks called common bandwidth spherical basis function NNs, including the probabilistic NN, the modified probabilistic NN and the general regression NN.
Intelligent Speech Signal Processing
Author: Nilanjan Dey
Publisher: Academic Press
ISBN: 0128181303
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
Intelligent Speech Signal Processing investigates the utilization of speech analytics across several systems and real-world activities, including sharing data analytics, creating collaboration networks between several participants, and implementing video-conferencing in different application areas. Chapters focus on the latest applications of speech data analysis and management tools across different recording systems. The book emphasizes the multidisciplinary nature of the field, presenting different applications and challenges with extensive studies on the design, development and management of intelligent systems, neural networks and related machine learning techniques for speech signal processing.
Publisher: Academic Press
ISBN: 0128181303
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
Intelligent Speech Signal Processing investigates the utilization of speech analytics across several systems and real-world activities, including sharing data analytics, creating collaboration networks between several participants, and implementing video-conferencing in different application areas. Chapters focus on the latest applications of speech data analysis and management tools across different recording systems. The book emphasizes the multidisciplinary nature of the field, presenting different applications and challenges with extensive studies on the design, development and management of intelligent systems, neural networks and related machine learning techniques for speech signal processing.
Intelligent Signal Processing
Author: Simon Haykin
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 610
Book Description
"IEEE Press is proud to present the first selected reprint volume devoted to the new field of intelligent signal processing (ISP). ISP differs fundamentally from the classical approach to statistical signal processing in that the input-output behavior of a complex system is modeled by using "intelligent" or "model-free" techniques, rather than relying on the shortcomings of a mathematical model. Information is extracted from incoming signal and noise data, making few assumptions about the statistical structure of signals and their environment. Intelligent Signal Processing explores how ISP tools address the problems of practical neural systems, new signal data, and blind fuzzy approximators. The editors have compiled 20 articles written by prominent researchers covering 15 diverse, practical applications of this nascent topic, exposing the reader to the signal processing power of learning and adaptive systems. This essential reference is intended for researchers, professional engineers, and scientists working in statistical signal processing and its applications in various fields such as humanistic intelligence, stochastic resonance, financial markets, optimization, pattern recognition, signal detection, speech processing, and sensor fusion. Intelligent Signal Processing is also invaluable for graduate students and academics with a background in computer science, computer engineering, or electrical engineering. About the Editors Simon Haykin is the founding director of the Communications Research Laboratory at McMaster University, Hamilton, Ontario, Canada, where he serves as university professor. His research interests include nonlinear dynamics, neural networks and adaptive filters and their applications in radar and communications systems. Dr. Haykin is the editor for a series of books on "Adaptive and Learning Systems for Signal Processing, Communications and Control" (Publisher) and is both an IEEE Fellow and Fellow of the Royal Society of Canada. Bart Kosko is a past director of the University of Southern California's (USC) Signal and Image Processing Institute. He has authored several books, including Neural Networks and Fuzzy Systems, Neural Networks for Signal Processing (Publisher, copyright date) and Fuzzy Thinking (Publisher, copyright date), as well as the novel Nanotime (Publisher, copyright date). Dr. Kosko is an elected governor of the International Neural Network Society and has chaired many neural and fuzzy system conferences. Currently, he is associate professor of electrical engineering at USC."
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 610
Book Description
"IEEE Press is proud to present the first selected reprint volume devoted to the new field of intelligent signal processing (ISP). ISP differs fundamentally from the classical approach to statistical signal processing in that the input-output behavior of a complex system is modeled by using "intelligent" or "model-free" techniques, rather than relying on the shortcomings of a mathematical model. Information is extracted from incoming signal and noise data, making few assumptions about the statistical structure of signals and their environment. Intelligent Signal Processing explores how ISP tools address the problems of practical neural systems, new signal data, and blind fuzzy approximators. The editors have compiled 20 articles written by prominent researchers covering 15 diverse, practical applications of this nascent topic, exposing the reader to the signal processing power of learning and adaptive systems. This essential reference is intended for researchers, professional engineers, and scientists working in statistical signal processing and its applications in various fields such as humanistic intelligence, stochastic resonance, financial markets, optimization, pattern recognition, signal detection, speech processing, and sensor fusion. Intelligent Signal Processing is also invaluable for graduate students and academics with a background in computer science, computer engineering, or electrical engineering. About the Editors Simon Haykin is the founding director of the Communications Research Laboratory at McMaster University, Hamilton, Ontario, Canada, where he serves as university professor. His research interests include nonlinear dynamics, neural networks and adaptive filters and their applications in radar and communications systems. Dr. Haykin is the editor for a series of books on "Adaptive and Learning Systems for Signal Processing, Communications and Control" (Publisher) and is both an IEEE Fellow and Fellow of the Royal Society of Canada. Bart Kosko is a past director of the University of Southern California's (USC) Signal and Image Processing Institute. He has authored several books, including Neural Networks and Fuzzy Systems, Neural Networks for Signal Processing (Publisher, copyright date) and Fuzzy Thinking (Publisher, copyright date), as well as the novel Nanotime (Publisher, copyright date). Dr. Kosko is an elected governor of the International Neural Network Society and has chaired many neural and fuzzy system conferences. Currently, he is associate professor of electrical engineering at USC."
Neural Networks for Intelligent Signal Processing
Author: Anthony Zaknich
Publisher: World Scientific
ISBN: 9812383050
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
This book provides a thorough theoretical and practical introduction to the application of neural networks to pattern recognition and intelligent signal processing. It has been tested on students, unfamiliar with neural networks, who were able to pick up enough details to successfully complete their masters or final year undergraduate projects. The text also presents a comprehensive treatment of a class of neural networks called common bandwidth spherical basis function NNs, including the probabilistic NN, the modified probabilistic NN and the general regression NN.
Publisher: World Scientific
ISBN: 9812383050
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
This book provides a thorough theoretical and practical introduction to the application of neural networks to pattern recognition and intelligent signal processing. It has been tested on students, unfamiliar with neural networks, who were able to pick up enough details to successfully complete their masters or final year undergraduate projects. The text also presents a comprehensive treatment of a class of neural networks called common bandwidth spherical basis function NNs, including the probabilistic NN, the modified probabilistic NN and the general regression NN.
Speech, Audio, Image and Biomedical Signal Processing using Neural Networks
Author: Bhanu Prasad
Publisher: Springer Science & Business Media
ISBN: 3540753974
Category : Computers
Languages : en
Pages : 419
Book Description
Humans are remarkable in processing speech, audio, image and some biomedical signals. Artificial neural networks are proved to be successful in performing several cognitive, industrial and scientific tasks. This peer reviewed book presents some recent advances and surveys on the applications of artificial neural networks in the areas of speech, audio, image and biomedical signal processing. It chapters are prepared by some reputed researchers and practitioners around the globe.
Publisher: Springer Science & Business Media
ISBN: 3540753974
Category : Computers
Languages : en
Pages : 419
Book Description
Humans are remarkable in processing speech, audio, image and some biomedical signals. Artificial neural networks are proved to be successful in performing several cognitive, industrial and scientific tasks. This peer reviewed book presents some recent advances and surveys on the applications of artificial neural networks in the areas of speech, audio, image and biomedical signal processing. It chapters are prepared by some reputed researchers and practitioners around the globe.
Neural Networks for Optimization and Signal Processing
Author: Andrzej Cichocki
Publisher: John Wiley & Sons
ISBN:
Category : Computers
Languages : en
Pages : 578
Book Description
A topical introduction on the ability of artificial neural networks to not only solve on-line a wide range of optimization problems but also to create new techniques and architectures. Provides in-depth coverage of mathematical modeling along with illustrative computer simulation results.
Publisher: John Wiley & Sons
ISBN:
Category : Computers
Languages : en
Pages : 578
Book Description
A topical introduction on the ability of artificial neural networks to not only solve on-line a wide range of optimization problems but also to create new techniques and architectures. Provides in-depth coverage of mathematical modeling along with illustrative computer simulation results.
Artificial Intelligence in the Age of Neural Networks and Brain Computing
Author: Robert Kozma
Publisher: Academic Press
ISBN: 0323958168
Category : Computers
Languages : en
Pages : 398
Book Description
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Publisher: Academic Press
ISBN: 0323958168
Category : Computers
Languages : en
Pages : 398
Book Description
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Neural Information Processing and VLSI
Author: Bing J. Sheu
Publisher: Springer Science & Business Media
ISBN: 1461522471
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
Publisher: Springer Science & Business Media
ISBN: 1461522471
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
Machine Learning in Signal Processing
Author: Sudeep Tanwar
Publisher: CRC Press
ISBN: 1000487792
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
Machine Learning in Signal Processing: Applications, Challenges, and the Road Ahead offers a comprehensive approach toward research orientation for familiarizing signal processing (SP) concepts to machine learning (ML). ML, as the driving force of the wave of artificial intelligence (AI), provides powerful solutions to many real-world technical and scientific challenges. This book will present the most recent and exciting advances in signal processing for ML. The focus is on understanding the contributions of signal processing and ML, and its aim to solve some of the biggest challenges in AI and ML. FEATURES Focuses on addressing the missing connection between signal processing and ML Provides a one-stop guide reference for readers Oriented toward material and flow with regards to general introduction and technical aspects Comprehensively elaborates on the material with examples and diagrams This book is a complete resource designed exclusively for advanced undergraduate students, post-graduate students, research scholars, faculties, and academicians of computer science and engineering, computer science and applications, and electronics and telecommunication engineering.
Publisher: CRC Press
ISBN: 1000487792
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
Machine Learning in Signal Processing: Applications, Challenges, and the Road Ahead offers a comprehensive approach toward research orientation for familiarizing signal processing (SP) concepts to machine learning (ML). ML, as the driving force of the wave of artificial intelligence (AI), provides powerful solutions to many real-world technical and scientific challenges. This book will present the most recent and exciting advances in signal processing for ML. The focus is on understanding the contributions of signal processing and ML, and its aim to solve some of the biggest challenges in AI and ML. FEATURES Focuses on addressing the missing connection between signal processing and ML Provides a one-stop guide reference for readers Oriented toward material and flow with regards to general introduction and technical aspects Comprehensively elaborates on the material with examples and diagrams This book is a complete resource designed exclusively for advanced undergraduate students, post-graduate students, research scholars, faculties, and academicians of computer science and engineering, computer science and applications, and electronics and telecommunication engineering.
Intelligent Systems and Signal Processing in Power Engineering
Author: Abhisek Ukil
Publisher: Springer Science & Business Media
ISBN: 3540731709
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
This highly experienced author sets out to build a bridge between two inter-disciplinary power engineering practices. The book looks into two major fields used in modern power systems: intelligent systems and the signal processing. The intelligent systems section comprises fuzzy logic, neural network and support vector machine. The author looks at relevant theories on the topics without assuming much particular background. Following the theoretical basics, he studies their applications in various problems in power engineering, like, load forecasting, phase balancing, or disturbance analysis.
Publisher: Springer Science & Business Media
ISBN: 3540731709
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
This highly experienced author sets out to build a bridge between two inter-disciplinary power engineering practices. The book looks into two major fields used in modern power systems: intelligent systems and the signal processing. The intelligent systems section comprises fuzzy logic, neural network and support vector machine. The author looks at relevant theories on the topics without assuming much particular background. Following the theoretical basics, he studies their applications in various problems in power engineering, like, load forecasting, phase balancing, or disturbance analysis.