Author: Nikil R. Pal
Publisher: Springer Science & Business Media
ISBN: 3540239316
Category : Computers
Languages : en
Pages : 1397
Book Description
Annotation This book constitutes the refereed proceedings of the 11th International Conference on Neural Information Processing, ICONIP 2004, held in Calcutta, India in November 2004. The 186 revised papers presented together with 24 invited contributions were carefully reviewed and selected from 470 submissions. The papers are organized in topical sections on computational neuroscience, complex-valued neural networks, self-organizing maps, evolutionary computation, control systems, cognitive science, adaptive intelligent systems, biometrics, brain-like computing, learning algorithms, novel neural architectures, image processing, pattern recognition, neuroinformatics, fuzzy systems, neuro-fuzzy systems, hybrid systems, feature analysis, independent component analysis, ant colony, neural network hardware, robotics, signal processing, support vector machine, time series prediction, and bioinformatics.
Neural information processing [electronic resource]
Author: Nikil R. Pal
Publisher: Springer Science & Business Media
ISBN: 3540239316
Category : Computers
Languages : en
Pages : 1397
Book Description
Annotation This book constitutes the refereed proceedings of the 11th International Conference on Neural Information Processing, ICONIP 2004, held in Calcutta, India in November 2004. The 186 revised papers presented together with 24 invited contributions were carefully reviewed and selected from 470 submissions. The papers are organized in topical sections on computational neuroscience, complex-valued neural networks, self-organizing maps, evolutionary computation, control systems, cognitive science, adaptive intelligent systems, biometrics, brain-like computing, learning algorithms, novel neural architectures, image processing, pattern recognition, neuroinformatics, fuzzy systems, neuro-fuzzy systems, hybrid systems, feature analysis, independent component analysis, ant colony, neural network hardware, robotics, signal processing, support vector machine, time series prediction, and bioinformatics.
Publisher: Springer Science & Business Media
ISBN: 3540239316
Category : Computers
Languages : en
Pages : 1397
Book Description
Annotation This book constitutes the refereed proceedings of the 11th International Conference on Neural Information Processing, ICONIP 2004, held in Calcutta, India in November 2004. The 186 revised papers presented together with 24 invited contributions were carefully reviewed and selected from 470 submissions. The papers are organized in topical sections on computational neuroscience, complex-valued neural networks, self-organizing maps, evolutionary computation, control systems, cognitive science, adaptive intelligent systems, biometrics, brain-like computing, learning algorithms, novel neural architectures, image processing, pattern recognition, neuroinformatics, fuzzy systems, neuro-fuzzy systems, hybrid systems, feature analysis, independent component analysis, ant colony, neural network hardware, robotics, signal processing, support vector machine, time series prediction, and bioinformatics.
Advances in Neural Information Processing Systems 15
Author: Suzanna Becker
Publisher: MIT Press
ISBN: 9780262025508
Category : Computers
Languages : en
Pages : 1738
Book Description
Proceedings of the 2002 Neural Information Processing Systems Conference.
Publisher: MIT Press
ISBN: 9780262025508
Category : Computers
Languages : en
Pages : 1738
Book Description
Proceedings of the 2002 Neural Information Processing Systems Conference.
Advances in Neural Information Processing Systems 10
Author: Michael I. Jordan
Publisher: MIT Press
ISBN: 9780262100762
Category : Computers
Languages : en
Pages : 1114
Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. These proceedings contain all of the papers that were presented.
Publisher: MIT Press
ISBN: 9780262100762
Category : Computers
Languages : en
Pages : 1114
Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. These proceedings contain all of the papers that were presented.
Advances in Neural Information Processing Systems 17
Author: Lawrence K. Saul
Publisher: MIT Press
ISBN: 9780262195348
Category : Computers
Languages : en
Pages : 1710
Book Description
Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.
Publisher: MIT Press
ISBN: 9780262195348
Category : Computers
Languages : en
Pages : 1710
Book Description
Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.
Advances in Neural Information Processing Systems 12
Author: Sara A. Solla
Publisher: MIT Press
ISBN: 9780262194501
Category : Computers
Languages : en
Pages : 1124
Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Publisher: MIT Press
ISBN: 9780262194501
Category : Computers
Languages : en
Pages : 1124
Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Advances in Neural Information Processing Systems 11
Author: Michael S. Kearns
Publisher: MIT Press
ISBN: 9780262112451
Category : Computers
Languages : en
Pages : 1122
Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Publisher: MIT Press
ISBN: 9780262112451
Category : Computers
Languages : en
Pages : 1122
Book Description
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Neural Information Processing and VLSI
Author: Bing J. Sheu
Publisher: Springer Science & Business Media
ISBN: 1461522471
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
Publisher: Springer Science & Business Media
ISBN: 1461522471
Category : Technology & Engineering
Languages : en
Pages : 569
Book Description
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
Theory of Neural Information Processing Systems
Author: A.C.C. Coolen
Publisher: OUP Oxford
ISBN: 9780191583001
Category : Neural networks (Computer science)
Languages : en
Pages : 596
Book Description
Theory of Neural Information Processing Systems provides an explicit, coherent, and up-to-date account of the modern theory of neural information processing systems. It has been carefully developed for graduate students from any quantitative discipline, including mathematics, computer science, physics, engineering or biology, and has been thoroughly class-tested by the authors over a period of some 8 years. Exercises are presented throughout the text and notes on historical background and further reading guide the student into the literature. All mathematical details are included and appendices provide further background material, including probability theory, linear algebra and stochastic processes, making this textbook accessible to a wide audience.
Publisher: OUP Oxford
ISBN: 9780191583001
Category : Neural networks (Computer science)
Languages : en
Pages : 596
Book Description
Theory of Neural Information Processing Systems provides an explicit, coherent, and up-to-date account of the modern theory of neural information processing systems. It has been carefully developed for graduate students from any quantitative discipline, including mathematics, computer science, physics, engineering or biology, and has been thoroughly class-tested by the authors over a period of some 8 years. Exercises are presented throughout the text and notes on historical background and further reading guide the student into the literature. All mathematical details are included and appendices provide further background material, including probability theory, linear algebra and stochastic processes, making this textbook accessible to a wide audience.
Models of Information Processing in the Basal Ganglia
Author: James C. Houk
Publisher: MIT Press
ISBN: 9780262082341
Category : Medical
Languages : en
Pages : 414
Book Description
This book brings together the biology and computational features of the basal ganglia and their related cortical areas along with select examples of how this knowledge can be integrated into neural network models. Recent years have seen a remarkable expansion of knowledge about the anatomical organization of the part of the brain known as the basal ganglia, the signal processing that occurs in these structures, and the many relations both to molecular mechanisms and to cognitive functions. This book brings together the biology and computational features of the basal ganglia and their related cortical areas along with select examples of how this knowledge can be integrated into neural network models. Organized in four parts - fundamentals, motor functions and working memories, reward mechanisms, and cognitive and memory operations - the chapters present a unique admixture of theory, cognitive psychology, anatomy, and both cellular- and systems- level physiology written by experts in each of these areas. The editors have provided commentaries as a helpful guide to each part. Many new discoveries about the biology of the basal ganglia are summarized, and their impact on the computational role of the forebrain in the planning and control of complex motor behaviors discussed. The various findings point toward an unexpected role for the basal ganglia in the contextual analysis of the environment and in the adaptive use of this information for the planning and execution of intelligent behaviors. Parallels are explored between these findings and new connectionist approaches to difficult control problems in robotics and engineering. Contributors James L. Adams, P. Apicella, Michael Arbib, Dana H. Ballard, Andrew G. Barto, J. Brian Burns, Christopher I. Connolly, Peter F. Dominey, Richard P. Dum, John Gabrieli, M. Garcia-Munoz, Patricia S. Goldman-Rakic, Ann M. Graybiel, P. M. Groves, Mary M. Hayhoe, J. R. Hollerman, George Houghton, James C. Houk, Stephen Jackson, Minoru Kimura, A. B. Kirillov, Rolf Kotter, J. C. Linder, T. Ljungberg, M. S. Manley, M. E. Martone, J. Mirenowicz, C. D. Myre, Jeff Pelz, Nathalie Picard, R. Romo, S. F. Sawyer, E Scarnat, Wolfram Schultz, Peter L. Strick, Charles J. Wilson, Jeff Wickens, Donald J. Woodward, S. J. Young
Publisher: MIT Press
ISBN: 9780262082341
Category : Medical
Languages : en
Pages : 414
Book Description
This book brings together the biology and computational features of the basal ganglia and their related cortical areas along with select examples of how this knowledge can be integrated into neural network models. Recent years have seen a remarkable expansion of knowledge about the anatomical organization of the part of the brain known as the basal ganglia, the signal processing that occurs in these structures, and the many relations both to molecular mechanisms and to cognitive functions. This book brings together the biology and computational features of the basal ganglia and their related cortical areas along with select examples of how this knowledge can be integrated into neural network models. Organized in four parts - fundamentals, motor functions and working memories, reward mechanisms, and cognitive and memory operations - the chapters present a unique admixture of theory, cognitive psychology, anatomy, and both cellular- and systems- level physiology written by experts in each of these areas. The editors have provided commentaries as a helpful guide to each part. Many new discoveries about the biology of the basal ganglia are summarized, and their impact on the computational role of the forebrain in the planning and control of complex motor behaviors discussed. The various findings point toward an unexpected role for the basal ganglia in the contextual analysis of the environment and in the adaptive use of this information for the planning and execution of intelligent behaviors. Parallels are explored between these findings and new connectionist approaches to difficult control problems in robotics and engineering. Contributors James L. Adams, P. Apicella, Michael Arbib, Dana H. Ballard, Andrew G. Barto, J. Brian Burns, Christopher I. Connolly, Peter F. Dominey, Richard P. Dum, John Gabrieli, M. Garcia-Munoz, Patricia S. Goldman-Rakic, Ann M. Graybiel, P. M. Groves, Mary M. Hayhoe, J. R. Hollerman, George Houghton, James C. Houk, Stephen Jackson, Minoru Kimura, A. B. Kirillov, Rolf Kotter, J. C. Linder, T. Ljungberg, M. S. Manley, M. E. Martone, J. Mirenowicz, C. D. Myre, Jeff Pelz, Nathalie Picard, R. Romo, S. F. Sawyer, E Scarnat, Wolfram Schultz, Peter L. Strick, Charles J. Wilson, Jeff Wickens, Donald J. Woodward, S. J. Young
Deep Learning
Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801
Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801
Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.