Neural Control of Renal Function

Neural Control of Renal Function PDF Author: Ulla Kopp
Publisher: Morgan & Claypool Publishers
ISBN: 1615042318
Category : Medical
Languages : en
Pages : 99

Get Book Here

Book Description
The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References

Neural Control of Renal Function

Neural Control of Renal Function PDF Author: Ulla Kopp
Publisher: Morgan & Claypool Publishers
ISBN: 1615042318
Category : Medical
Languages : en
Pages : 99

Get Book Here

Book Description
The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Activation of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension. Table of Contents: Part I: Efferent Renal Sympathetic Nerves / Introduction / Neuroanatomy / Neural Control of Renal Hemodynamics / Neural Control of Renal Tubular Function / Neural Control of Renin Secretion Rate / Part II: Afferent Renal Sensory Nerves / Introduction / Neuroanatomy / Renorenal Reflexes / Mechanisms Involved in the Activation of Afferent Renal Sensory Nerves / Part III: Pathophysiological States / Efferent Renal Sympathetic Nerves / Afferent Renal Sensory Nerves / Conclusions / References

Anatomy and Physiology

Anatomy and Physiology PDF Author: J. Gordon Betts
Publisher:
ISBN: 9781947172807
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Neural Control of Renal Function, Second Edition

Neural Control of Renal Function, Second Edition PDF Author: Ulla C. Kopp
Publisher: Biota Publishing
ISBN: 161504776X
Category : Science
Languages : en
Pages : 122

Get Book Here

Book Description
The kidney is innervated with efferent sympathetic nerve fibers reaching the renal vasculature, the tubules, the juxtaglomerular granular cells, and the renal pelvic wall. The renal sensory nerves are mainly found in the renal pelvic wall. Increases in efferent renal sympathetic nerve activity reduce renal blood flow and urinary sodium excretion by activation of α1-adrenoceptors and increase renin secretion rate by activation of β1-adrenoceptors. In response to normal physiological stimulation, changes in efferent renal sympathetic nerve activity contribute importantly to homeostatic regulation of sodium and water balance. The renal mechanosensory nerves are activated by stretch of the renal pelvic tissue produced by increases in renal pelvic tissue of a magnitude that may occur during increased urine flow rate. Under normal conditions, the renal mechanosensory nerves activated by stretch of the sensory nerves elicits an inhibitory renorenal reflex response consisting of decreases in efferent renal sympathetic nerve activity leading to natriuresis. Increasing efferent sympathetic nerve activity increases afferent renal nerve activity which, in turn, decreases efferent renal sympathetic nerve activity by activation of the renorenal reflexes. Thus, activation of the afferent renal nerves buffers changes in efferent renal sympathetic nerve activity in the overall goal of maintaining sodium balance. In pathological conditions of sodium retention, impairment of the inhibitory renorenal reflexes contributes to an inappropriately increased efferent renal sympathetic nerve activity in the presence of sodium retention. In states of renal disease or injury, there is a shift from inhibitory to excitatory reflexes originating in the kidney. Studies in essential hypertensive patients have shown that renal denervation results in long-term reduction in arterial pressure, suggesting an important role for the efferent and afferent renal nerves in hypertension.

Reflex Control of the Circulation

Reflex Control of the Circulation PDF Author: Irving H. Zucker
Publisher: CRC Press
ISBN: 1000725383
Category : Medical
Languages : en
Pages : 1088

Get Book Here

Book Description
Reflex Control of the Circulation presents an interdisciplinary discussion of concepts in the reflex control of circulation. This volume describes aspects of autonomic receptor physiology, central pathways of reflex control, the electrophysiology of cardiovascular afferents, the interaction between reflexes, the autonomic control of regional blood flows, the autonomic control of fluid and electrolyte balance, and neurohumoral control of the circulation through normal and pathological states (e.g., hypertension, congestive heart failure). In addition, the regulation of regional blood flow during exercise and developmental aspects of reflex control are examined. Any researcher interested in the autonomic system and its role in circulation will find this book fascinating reading.

Basic Physiology

Basic Physiology PDF Author: P.D. Sturkie
Publisher: Springer Science & Business Media
ISBN: 1461380812
Category : Medical
Languages : en
Pages : 453

Get Book Here

Book Description
Basic Physiology is an introduction to vertebrate physiology, stressing human physiology at the organ level, and includ ing requisite anatomy integrated with function. One chapter deals solely with topographic anatomy in atlas form and microscopic anatomy of the principal tissues of the body. Additional chapters cover cellular and general physiology; nervous system, muscle; blood and tissue fluids, heart and circulation; respiration, digestion and absorption; intermedi ary metabolism; energy metabolism; temperature regulation; nutrition; kidney; endocrinology, including hypophysis, re production; thyroids, parathyroids, adrenals and pancreas. All concepts are emphasized and well illustrated, and con troversial material is omitted. It is written at a level suited to undergraduate students who have had introductory courses in biology, chemistry, and mathematics, and to more ad vanced students who wish to review the basic concepts of physiology. This volume should be especially useful as a text for de partments of biology, zoology, nursing, health, and agricul tural sciences that offer courses in vertebrate and human physiology. Basic Physiology is written by seven subject matter special ists who have considerable experience in teaching their specialty to undergraduates studying physiology and biology.

Physiology at Harvard

Physiology at Harvard PDF Author: William Townsend Porter
Publisher:
ISBN:
Category : Physiology
Languages : en
Pages : 84

Get Book Here

Book Description
A part of the Duke Medical Center Library History of Medicine Ephemera Collection.

Renal Denervation

Renal Denervation PDF Author: Richard R. Heuser
Publisher: Springer
ISBN: 1447152239
Category : Medical
Languages : en
Pages : 203

Get Book Here

Book Description
Hypertension remains the leading cause of cardiovascular morbidity and mortality in spite of current medical therapies. It has been estimated that 50% of Western civilization has hypertension and approximately 20% of patients have resistant hypertension. Renal denervation (RDN) is a minimally invasive, endovascular catheter based procedure using radiofrequency ablation aimed at treating resistant hypertension. Early studies show a high degree of effectiveness in renal denervation to treat hypertension. This book examines renal pathophysiology and the rationale for renal denervation, as well as possible long term benefits and risks of this new therapy. The myriad of devices involved in the evolution of this therapy are discussed and the book concludes with analyses of the cost effectiveness and future applications.

Regulation of Tissue Oxygenation, Second Edition

Regulation of Tissue Oxygenation, Second Edition PDF Author: Roland N. Pittman
Publisher: Biota Publishing
ISBN: 1615047212
Category : Medical
Languages : en
Pages : 117

Get Book Here

Book Description
This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.

Anatomy & Physiology

Anatomy & Physiology PDF Author: Lindsay Biga
Publisher:
ISBN: 9781955101158
Category :
Languages : en
Pages :

Get Book Here

Book Description
A version of the OpenStax text

Acute Kidney Injury and Regenerative Medicine

Acute Kidney Injury and Regenerative Medicine PDF Author: Yoshio Terada
Publisher: Springer Nature
ISBN: 981151108X
Category : Medical
Languages : en
Pages : 390

Get Book Here

Book Description
This book presents up-to-date information on the clinical-pathophysiological features of acute renal injury and discusses the KDIGO diagnostic criteria, as well as novel experimental findings, including in the area of regenerative medicine. It also highlights the clinical-pathophysiological importance of AKI in clinical settings, including differential diagnoses and management of AKI. In the past, the pathology associated with sudden renal impairment was characterized as acute renal failure (ARF). However, in the 2000s, the joint efforts of specialists in fields including nephrology, intensive care medicine, and cardiovascular medicine led to the introduction of a novel concept known as acute kidney injury (AKI). As medical care progressed, patients such as high-risk elderly subjects who were not deemed to be candidates for invasive therapy came to be treated in intensive care units (ICUs). As a result, kidney injury as a subset of multiple organ failure was re-considered as AKI, especially in intensive care medicine. AKI was then proposed as a novel disease concept to emphasize the importance of early diagnosis and early intervention to improve prognosis.Presenting novel features, such as the definition of AKI, risk factors and management; biomarkers, such as neutrophil gelatinase-associated lipocalin (NGAL) and L-type fatty acid-binding protein (L-FABP); long-term outcomes of AKI; as well as renal regeneration using iPS cell, manipulation of embryonic genes, and Xenotransplanted embryonic kidney, this book is of interest to all physicians and researchers in this field around the globe.