Author: Haijun Zhang
Publisher: Springer Nature
ISBN: 9819770076
Category :
Languages : en
Pages : 502
Book Description
Neural Computing for Advanced Applications
Author: Haijun Zhang
Publisher: Springer Nature
ISBN: 9819770076
Category :
Languages : en
Pages : 502
Book Description
Publisher: Springer Nature
ISBN: 9819770076
Category :
Languages : en
Pages : 502
Book Description
Neural Computing for Advanced Applications
Author: Haijun Zhang
Publisher: Springer Nature
ISBN: 981157670X
Category : Computers
Languages : en
Pages : 542
Book Description
This book presents refereed proceedings of the First International Conference on Neural Computing for Advanced Applications, NCAA 2020, held in July, 2020. Due to the COVID-19 pandemic the conference was held online. The 36 full papers and 7 short papers were thorougly reviewed and selected from a total of 113 qualified submissions. The papers present resent research on such topics as neural network theory, and cognitive sciences, machine learning, data mining, data security & privacy protection, and data-driven applications, computational intelligence, nature-inspired optimizers, and their engineering applications, cloud/edge/fog computing, the Internet of Things/Vehicles (IoT/IoV), and their system optimization, control systems, network synchronization, system integration, and industrial artificial intelligence, fuzzy logic, neuro-fuzzy systems, decision making, and their applications in management sciences, computer vision, image processing, and their industrial applications, and natural language processing, machine translation, knowledge graphs, and their applications.
Publisher: Springer Nature
ISBN: 981157670X
Category : Computers
Languages : en
Pages : 542
Book Description
This book presents refereed proceedings of the First International Conference on Neural Computing for Advanced Applications, NCAA 2020, held in July, 2020. Due to the COVID-19 pandemic the conference was held online. The 36 full papers and 7 short papers were thorougly reviewed and selected from a total of 113 qualified submissions. The papers present resent research on such topics as neural network theory, and cognitive sciences, machine learning, data mining, data security & privacy protection, and data-driven applications, computational intelligence, nature-inspired optimizers, and their engineering applications, cloud/edge/fog computing, the Internet of Things/Vehicles (IoT/IoV), and their system optimization, control systems, network synchronization, system integration, and industrial artificial intelligence, fuzzy logic, neuro-fuzzy systems, decision making, and their applications in management sciences, computer vision, image processing, and their industrial applications, and natural language processing, machine translation, knowledge graphs, and their applications.
Advanced Methods in Neural Computing
Author: Philip D. Wasserman
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Computers
Languages : en
Pages : 280
Book Description
This is the engineer's guide to artificial neural networks, the advanced computing innovation which is posed to sweep into the world of business and industry. The author presents the basic principles and advanced concepts by means of high-performance paradigms which function effectively in real-world situations.
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Computers
Languages : en
Pages : 280
Book Description
This is the engineer's guide to artificial neural networks, the advanced computing innovation which is posed to sweep into the world of business and industry. The author presents the basic principles and advanced concepts by means of high-performance paradigms which function effectively in real-world situations.
International Conference on Neural Computing for Advanced Applications
Author: Haijun Zhang
Publisher: Springer Nature
ISBN: 981995844X
Category : Computers
Languages : en
Pages : 595
Book Description
The two-volume set CCIS 1869 and 1870 constitutes the refereed proceedings of the 4th International Conference on Neural Computing for Advanced Applications, NCAA 2023, held in Hefei, China, in July 2023. The 83 full papers and 1 short paper presented in these proceedings were carefully reviewed and selected from 211 submissions. The papers have been organized in the following topical sections: Neural network (NN) theory, NN-based control systems, neuro-system integration and engineering applications; Machine learning and deep learning for data mining and data-driven applications; Computational intelligence, nature-inspired optimizers, and their engineering applications; Deep learning-driven pattern recognition, computer vision and its industrial applications; Natural language processing, knowledge graphs, recommender systems, and their applications; Neural computing-based fault diagnosis and forecasting, prognostic management, and cyber-physical system security; Sequence learning for spreading dynamics, forecasting, and intelligent techniques against epidemic spreading (2); Applications of Data Mining, Machine Learning and Neural Computing in Language Studies; Computational intelligent Fault Diagnosis and Fault-Tolerant Control, and Their Engineering Applications; and Other Neural computing-related topics.
Publisher: Springer Nature
ISBN: 981995844X
Category : Computers
Languages : en
Pages : 595
Book Description
The two-volume set CCIS 1869 and 1870 constitutes the refereed proceedings of the 4th International Conference on Neural Computing for Advanced Applications, NCAA 2023, held in Hefei, China, in July 2023. The 83 full papers and 1 short paper presented in these proceedings were carefully reviewed and selected from 211 submissions. The papers have been organized in the following topical sections: Neural network (NN) theory, NN-based control systems, neuro-system integration and engineering applications; Machine learning and deep learning for data mining and data-driven applications; Computational intelligence, nature-inspired optimizers, and their engineering applications; Deep learning-driven pattern recognition, computer vision and its industrial applications; Natural language processing, knowledge graphs, recommender systems, and their applications; Neural computing-based fault diagnosis and forecasting, prognostic management, and cyber-physical system security; Sequence learning for spreading dynamics, forecasting, and intelligent techniques against epidemic spreading (2); Applications of Data Mining, Machine Learning and Neural Computing in Language Studies; Computational intelligent Fault Diagnosis and Fault-Tolerant Control, and Their Engineering Applications; and Other Neural computing-related topics.
Guide to Neural Computing Applications
Author: Lionel Tarassenko
Publisher: Elsevier
ISBN: 0080512607
Category : Computers
Languages : en
Pages : 151
Book Description
Neural networks have shown enormous potential for commercial exploitation over the last few years but it is easy to overestimate their capabilities. A few simple algorithms will learn relationships between cause and effect or organise large volumes of data into orderly and informative patterns but they cannot solve every problem and consequently their application must be chosen carefully and appropriately. This book outlines how best to make use of neural networks. It enables newcomers to the technology to construct robust and meaningful non-linear models and classifiers and benefits the more experienced practitioner who, through over familiarity, might otherwise be inclined to jump to unwarranted conclusions. The book is an invaluable resource not only for those in industry who are interested in neural computing solutions, but also for final year undergraduates or graduate students who are working on neural computing projects. It provides advice which will help make the best use of the growing number of commercial and public domain neural network software products, freeing the specialist from dependence upon external consultants.
Publisher: Elsevier
ISBN: 0080512607
Category : Computers
Languages : en
Pages : 151
Book Description
Neural networks have shown enormous potential for commercial exploitation over the last few years but it is easy to overestimate their capabilities. A few simple algorithms will learn relationships between cause and effect or organise large volumes of data into orderly and informative patterns but they cannot solve every problem and consequently their application must be chosen carefully and appropriately. This book outlines how best to make use of neural networks. It enables newcomers to the technology to construct robust and meaningful non-linear models and classifiers and benefits the more experienced practitioner who, through over familiarity, might otherwise be inclined to jump to unwarranted conclusions. The book is an invaluable resource not only for those in industry who are interested in neural computing solutions, but also for final year undergraduates or graduate students who are working on neural computing projects. It provides advice which will help make the best use of the growing number of commercial and public domain neural network software products, freeing the specialist from dependence upon external consultants.
Handbook of Neural Computation
Author: Pijush Samui
Publisher: Academic Press
ISBN: 0128113197
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods
Publisher: Academic Press
ISBN: 0128113197
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods
Advanced Applications for Artificial Neural Networks
Author: Adel El-Shahat
Publisher: BoD – Books on Demand
ISBN: 9535137808
Category : Computers
Languages : en
Pages : 298
Book Description
In this book, highly qualified multidisciplinary scientists grasp their recent researches motivated by the importance of artificial neural networks. It addresses advanced applications and innovative case studies for the next-generation optical networks based on modulation recognition using artificial neural networks, hardware ANN for gait generation of multi-legged robots, production of high-resolution soil property ANN maps, ANN and dynamic factor models to combine forecasts, ANN parameter recognition of engineering constants in Civil Engineering, ANN electricity consumption and generation forecasting, ANN for advanced process control, ANN breast cancer detection, ANN applications in biofuels, ANN modeling for manufacturing process optimization, spectral interference correction using a large-size spectrometer and ANN-based deep learning, solar radiation ANN prediction using NARX model, and ANN data assimilation for an atmospheric general circulation model.
Publisher: BoD – Books on Demand
ISBN: 9535137808
Category : Computers
Languages : en
Pages : 298
Book Description
In this book, highly qualified multidisciplinary scientists grasp their recent researches motivated by the importance of artificial neural networks. It addresses advanced applications and innovative case studies for the next-generation optical networks based on modulation recognition using artificial neural networks, hardware ANN for gait generation of multi-legged robots, production of high-resolution soil property ANN maps, ANN and dynamic factor models to combine forecasts, ANN parameter recognition of engineering constants in Civil Engineering, ANN electricity consumption and generation forecasting, ANN for advanced process control, ANN breast cancer detection, ANN applications in biofuels, ANN modeling for manufacturing process optimization, spectral interference correction using a large-size spectrometer and ANN-based deep learning, solar radiation ANN prediction using NARX model, and ANN data assimilation for an atmospheric general circulation model.
Artificial Intelligence in the Age of Neural Networks and Brain Computing
Author: Robert Kozma
Publisher: Academic Press
ISBN: 0323958168
Category : Computers
Languages : en
Pages : 398
Book Description
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Publisher: Academic Press
ISBN: 0323958168
Category : Computers
Languages : en
Pages : 398
Book Description
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Process Neural Networks
Author: Xingui He
Publisher: Springer Science & Business Media
ISBN: 3540737626
Category : Computers
Languages : en
Pages : 240
Book Description
For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.
Publisher: Springer Science & Business Media
ISBN: 3540737626
Category : Computers
Languages : en
Pages : 240
Book Description
For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.
Neural Computing
Author: Philip D. Wasserman
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Computers
Languages : en
Pages : 258
Book Description
This book for nonspecialists clearly explains major algorithms and demystifies the rigorous math involved in neural networks. Uses a step-by-step approach for implementing commonly used paradigms.
Publisher: Van Nostrand Reinhold Company
ISBN:
Category : Computers
Languages : en
Pages : 258
Book Description
This book for nonspecialists clearly explains major algorithms and demystifies the rigorous math involved in neural networks. Uses a step-by-step approach for implementing commonly used paradigms.