Author: Federico Bermudez-Rattoni
Publisher: CRC Press
ISBN: 1420008412
Category : Psychology
Languages : en
Pages : 368
Book Description
A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq
Neural Plasticity and Memory
Author: Federico Bermudez-Rattoni
Publisher: CRC Press
ISBN: 1420008412
Category : Psychology
Languages : en
Pages : 368
Book Description
A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq
Publisher: CRC Press
ISBN: 1420008412
Category : Psychology
Languages : en
Pages : 368
Book Description
A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq
Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics
Author: Carl Faingold
Publisher: Academic Press
ISBN: 0124158641
Category : Medical
Languages : en
Pages : 537
Book Description
Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, edited by two leaders in the field, offers a current and complete review of what we know about neural networks. How the brain accomplishes many of its more complex tasks can only be understood via study of neuronal network control and network interactions. Large networks can undergo major functional changes, resulting in substantially different brain function and affecting everything from learning to the potential for epilepsy. With chapters authored by experts in each topic, this book advances the understanding of: - How the brain carries out important tasks via networks - How these networks interact in normal brain function - Major mechanisms that control network function - The interaction of the normal networks to produce more complex behaviors - How brain disorders can result from abnormal interactions - How therapy of disorders can be advanced through this network approach This book will benefit neuroscience researchers and graduate students with an interest in networks, as well as clinicians in neuroscience, pharmacology, and psychiatry dealing with neurobiological disorders. - Utilizes perspectives and tools from various neuroscience subdisciplines (cellular, systems, physiologic), making the volume broadly relevant - Chapters explore normal network function and control mechanisms, with an eye to improving therapies for brain disorders - Reflects predominant disciplinary shift from an anatomical to a functional perspective of the brain - Edited work with chapters authored by leaders in the field around the globe – the broadest, most expert coverage available
Publisher: Academic Press
ISBN: 0124158641
Category : Medical
Languages : en
Pages : 537
Book Description
Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, edited by two leaders in the field, offers a current and complete review of what we know about neural networks. How the brain accomplishes many of its more complex tasks can only be understood via study of neuronal network control and network interactions. Large networks can undergo major functional changes, resulting in substantially different brain function and affecting everything from learning to the potential for epilepsy. With chapters authored by experts in each topic, this book advances the understanding of: - How the brain carries out important tasks via networks - How these networks interact in normal brain function - Major mechanisms that control network function - The interaction of the normal networks to produce more complex behaviors - How brain disorders can result from abnormal interactions - How therapy of disorders can be advanced through this network approach This book will benefit neuroscience researchers and graduate students with an interest in networks, as well as clinicians in neuroscience, pharmacology, and psychiatry dealing with neurobiological disorders. - Utilizes perspectives and tools from various neuroscience subdisciplines (cellular, systems, physiologic), making the volume broadly relevant - Chapters explore normal network function and control mechanisms, with an eye to improving therapies for brain disorders - Reflects predominant disciplinary shift from an anatomical to a functional perspective of the brain - Edited work with chapters authored by leaders in the field around the globe – the broadest, most expert coverage available
Inhibitory Synaptic Plasticity
Author: Melanie A. Woodin
Publisher: Springer Science & Business Media
ISBN: 1441969780
Category : Medical
Languages : en
Pages : 191
Book Description
This volume will explore the most recent findings on cellular mechanisms of inhibitory plasticity and its functional role in shaping neuronal circuits, their rewiring in response to experience, drug addiction and in neuropathology. Inhibitory Synaptic Plasticity will be of particular interest to neuroscientists and neurophysiologists.
Publisher: Springer Science & Business Media
ISBN: 1441969780
Category : Medical
Languages : en
Pages : 191
Book Description
This volume will explore the most recent findings on cellular mechanisms of inhibitory plasticity and its functional role in shaping neuronal circuits, their rewiring in response to experience, drug addiction and in neuropathology. Inhibitory Synaptic Plasticity will be of particular interest to neuroscientists and neurophysiologists.
Network Functions and Plasticity
Author: Jian Jing
Publisher: Academic Press
ISBN: 0128034998
Category : Medical
Languages : en
Pages : 394
Book Description
Network Functions and Plasticity: Perspectives from Studying Neuronal Electrical Coupling in Microcircuits focuses on the specific roles of electrical coupling in tractable, well-defined circuits, highlighting current research that offers novel insights for electrical coupling's roles in sensory and motor functions, neural computations, decision-making, regulation of network activity, circuit development, and learning and memory. Bringing together a diverse group of international experts and their contributions using a variety of approaches to study different invertebrate and vertebrate model systems with a focus on the role of electrical coupling/gap junctions in microcircuits, this book presents a timely contribution for students and researchers alike. - Provides an easy-to-read introduction on neural circuits of the model system - Focuses on the specific roles of electrical coupling in tractable, well-defined circuits - Includes recent discoveries and findings that are presented in the context of historical background - Outlines outstanding issues and future research in the field
Publisher: Academic Press
ISBN: 0128034998
Category : Medical
Languages : en
Pages : 394
Book Description
Network Functions and Plasticity: Perspectives from Studying Neuronal Electrical Coupling in Microcircuits focuses on the specific roles of electrical coupling in tractable, well-defined circuits, highlighting current research that offers novel insights for electrical coupling's roles in sensory and motor functions, neural computations, decision-making, regulation of network activity, circuit development, and learning and memory. Bringing together a diverse group of international experts and their contributions using a variety of approaches to study different invertebrate and vertebrate model systems with a focus on the role of electrical coupling/gap junctions in microcircuits, this book presents a timely contribution for students and researchers alike. - Provides an easy-to-read introduction on neural circuits of the model system - Focuses on the specific roles of electrical coupling in tractable, well-defined circuits - Includes recent discoveries and findings that are presented in the context of historical background - Outlines outstanding issues and future research in the field
The olivo-cerebellar system
Author: Egidio D'Angelo
Publisher: Frontiers Media SA
ISBN: 288919826X
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 324
Book Description
During the last decades, investigations on the olivo-cerebellar system have attained a high level of sophistication, which led to redefinitions of several structural and functional properties of neurons, synapses, connections and circuits. Research has expanded and deepened in so many directions and so many theories and models have been proposed that an ensemble review of the matter is now needed. Yet, hot topics remain open and scientific discussion is very lively at several fronts. One major question, here as well as in other major brain circuits, is how single neurons and synaptic properties emerge at the network level and contribute to behavioural regulation via neuronal plasticity. Other major aspects that this Research Topic covers and discusses include the development and circuit organization of the olivo-cerebellar network, the established and recent theories of learning and motor control, and the emerging role of the cerebellum in cognitive processing. By touching on such varied and encompassing subjects, this Frontiers Special Topic aims to highlight the state of the art and stimulate future research. We hope that this unique collection of high-quality articles from experts in the field will provide scientists with a powerful basis of knowledge and inspiration to enucleate the major issues deserving further attention.
Publisher: Frontiers Media SA
ISBN: 288919826X
Category : Neurosciences. Biological psychiatry. Neuropsychiatry
Languages : en
Pages : 324
Book Description
During the last decades, investigations on the olivo-cerebellar system have attained a high level of sophistication, which led to redefinitions of several structural and functional properties of neurons, synapses, connections and circuits. Research has expanded and deepened in so many directions and so many theories and models have been proposed that an ensemble review of the matter is now needed. Yet, hot topics remain open and scientific discussion is very lively at several fronts. One major question, here as well as in other major brain circuits, is how single neurons and synaptic properties emerge at the network level and contribute to behavioural regulation via neuronal plasticity. Other major aspects that this Research Topic covers and discusses include the development and circuit organization of the olivo-cerebellar network, the established and recent theories of learning and motor control, and the emerging role of the cerebellum in cognitive processing. By touching on such varied and encompassing subjects, this Frontiers Special Topic aims to highlight the state of the art and stimulate future research. We hope that this unique collection of high-quality articles from experts in the field will provide scientists with a powerful basis of knowledge and inspiration to enucleate the major issues deserving further attention.
Translational Research in Traumatic Brain Injury
Author: Daniel Laskowitz
Publisher: CRC Press
ISBN: 1498766579
Category : Medical
Languages : en
Pages : 388
Book Description
Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme
Publisher: CRC Press
ISBN: 1498766579
Category : Medical
Languages : en
Pages : 388
Book Description
Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme
Neurobiology of Motor Control
Author: Scott L. Hooper
Publisher: John Wiley & Sons
ISBN: 1118873629
Category : Medical
Languages : en
Pages : 690
Book Description
A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.
Publisher: John Wiley & Sons
ISBN: 1118873629
Category : Medical
Languages : en
Pages : 690
Book Description
A multi-disciplinary look at the current state of knowledge regarding motor control and movement—from molecular biology to robotics The last two decades have seen a dramatic increase in the number of sophisticated tools and methodologies for exploring motor control and movement. Multi-unit recordings, molecular neurogenetics, computer simulation, and new scientific approaches for studying how muscles and body anatomy transform motor neuron activity into movement have helped revolutionize the field. Neurobiology of Motor Control brings together contributions from an interdisciplinary group of experts to provide a review of the current state of knowledge about the initiation and execution of movement, as well as the latest methods and tools for investigating them. The book ranges from the findings of basic scientists studying model organisms such as mollusks and Drosophila, to biomedical researchers investigating vertebrate motor production to neuroengineers working to develop robotic and smart prostheses technologies. Following foundational chapters on current molecular biological techniques, neuronal ensemble recording, and computer simulation, it explores a broad range of related topics, including the evolution of motor systems, directed targeted movements, plasticity and learning, and robotics. Explores motor control and movement in a wide variety of organisms, from simple invertebrates to human beings Offers concise summaries of motor control systems across a variety of animals and movement types Explores an array of tools and methodologies, including electrophysiological techniques, neurogenic and molecular techniques, large ensemble recordings, and computational methods Considers unresolved questions and how current scientific advances may be used to solve them going forward Written specifically to encourage interdisciplinary understanding and collaboration, and offering the most wide-ranging, timely, and comprehensive look at the science of motor control and movement currently available, Neurobiology of Motor Control is a must-read for all who study movement production and the neurobiological basis of movement—from molecular biologists to roboticists.
Homeostatic Synaptic Plasticity: From Synaptic Circuit Assembly to Neurological Disorders
Author: Lorenzo A. Cingolani
Publisher: Frontiers Media SA
ISBN: 2889669882
Category : Science
Languages : en
Pages : 174
Book Description
Publisher: Frontiers Media SA
ISBN: 2889669882
Category : Science
Languages : en
Pages : 174
Book Description
Cognitive Enhancement in Schizophrenia and Related Disorders
Author: Matcheri Keshavan
Publisher: Cambridge University Press
ISBN: 1107194784
Category : Medical
Languages : en
Pages : 199
Book Description
A practical guide on how to assess and treat schizophrenia and related disorders using cognitive rehabilitation.
Publisher: Cambridge University Press
ISBN: 1107194784
Category : Medical
Languages : en
Pages : 199
Book Description
A practical guide on how to assess and treat schizophrenia and related disorders using cognitive rehabilitation.
The Rewiring Brain
Author: Arjen van Ooyen
Publisher: Academic Press
ISBN: 0128038721
Category : Science
Languages : en
Pages : 586
Book Description
The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke. Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders. Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists. - Reviews the current state of knowledge of structural plasticity in the adult brain - Gives a comprehensive overview of computational studies on structural plasticity - Provides insights into the potential driving forces of structural plasticity and the functional implications of structural plasticity for learning and memory - Serves as inspiration for developing novel treatment strategies for stimulating functional repair after brain damage
Publisher: Academic Press
ISBN: 0128038721
Category : Science
Languages : en
Pages : 586
Book Description
The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke. Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders. Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists. - Reviews the current state of knowledge of structural plasticity in the adult brain - Gives a comprehensive overview of computational studies on structural plasticity - Provides insights into the potential driving forces of structural plasticity and the functional implications of structural plasticity for learning and memory - Serves as inspiration for developing novel treatment strategies for stimulating functional repair after brain damage