Network Biology

Network Biology PDF Author: Gerard Cagney
Publisher: Humana Press
ISBN: 9781617792755
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
While extremely large datasets describing gene sequences, mRNA transcripts, protein abundance, and metabolite concentrations are increasingly commonplace, these represent only starting ‘parts lists’ that are usually insufficient to unlock mechanistic insights on their own right. Fortunately, as Network Biology: Methods and Applications examines, concepts emerging from the study of biological entities such as networks (e.g. functional interactions linking genes, proteins, metabolites, etc.) suggest that order rather than chaos prevails, with such principles as modular and hierarchical organization, reactive information-driven causal-response behaviours, systems robustness, co-evolution, and self-organization guiding the way. This volume presents detailed, practical descriptions of the experimental and computational approaches currently prevalent in network biology as written by practiced experts in the field. Written in the highly successful Methods in Molecular BiologyTM series format, relevant chapters contain introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and accessible, Network Biology: Methods and Applications provides an ensemble of procedures that will be of great value to a broad assortment of readers, ranging from graduate students to seasoned professionals looking to polish their skill sets.

Network Biology

Network Biology PDF Author: Gerard Cagney
Publisher: Humana Press
ISBN: 9781617792755
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
While extremely large datasets describing gene sequences, mRNA transcripts, protein abundance, and metabolite concentrations are increasingly commonplace, these represent only starting ‘parts lists’ that are usually insufficient to unlock mechanistic insights on their own right. Fortunately, as Network Biology: Methods and Applications examines, concepts emerging from the study of biological entities such as networks (e.g. functional interactions linking genes, proteins, metabolites, etc.) suggest that order rather than chaos prevails, with such principles as modular and hierarchical organization, reactive information-driven causal-response behaviours, systems robustness, co-evolution, and self-organization guiding the way. This volume presents detailed, practical descriptions of the experimental and computational approaches currently prevalent in network biology as written by practiced experts in the field. Written in the highly successful Methods in Molecular BiologyTM series format, relevant chapters contain introductions to their respective topics, lists of the necessary materials, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Comprehensive and accessible, Network Biology: Methods and Applications provides an ensemble of procedures that will be of great value to a broad assortment of readers, ranging from graduate students to seasoned professionals looking to polish their skill sets.

Molecular Biology of the Cell

Molecular Biology of the Cell PDF Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0

Get Book Here

Book Description


Network Inference in Molecular Biology

Network Inference in Molecular Biology PDF Author: Jesse M. Lingeman
Publisher: Springer Science & Business Media
ISBN: 1461431131
Category : Computers
Languages : en
Pages : 106

Get Book Here

Book Description
Inferring gene regulatory networks is a difficult problem to solve due to the relative scarcity of data compared to the potential size of the networks. While researchers have developed techniques to find some of the underlying network structure, there is still no one-size-fits-all algorithm for every data set. Network Inference in Molecular Biology examines the current techniques used by researchers, and provides key insights into which algorithms best fit a collection of data. Through a series of in-depth examples, the book also outlines how to mix-and-match algorithms, in order to create one tailored to a specific data situation. Network Inference in Molecular Biology is intended for advanced-level students and researchers as a reference guide. Practitioners and professionals working in a related field will also find this book valuable.

Networks in Cell Biology

Networks in Cell Biology PDF Author: Mark Buchanan
Publisher: Cambridge University Press
ISBN: 0521882737
Category : Science
Languages : en
Pages : 282

Get Book Here

Book Description
Key introductory text for graduate students and researchers in physics, biology and biochemistry.

Bacterial Molecular Networks

Bacterial Molecular Networks PDF Author: Denis Thieffry
Publisher: Humana Press
ISBN: 9781493961566
Category : Science
Languages : en
Pages : 560

Get Book Here

Book Description
Bacterial Molecular Networks provides authoritative descriptions of various experimental and computational methods that enable the characterization and analysis of molecular interaction networks.

Network Medicine

Network Medicine PDF Author: Joseph Loscalzo
Publisher: Harvard University Press
ISBN: 0674436539
Category : Medical
Languages : en
Pages : 449

Get Book Here

Book Description
Big data, genomics, and quantitative approaches to network-based analysis are combining to advance the frontiers of medicine as never before. Network Medicine introduces this rapidly evolving field of medical research, which promises to revolutionize the diagnosis and treatment of human diseases. With contributions from leading experts that highlight the necessity of a team-based approach in network medicine, this definitive volume provides readers with a state-of-the-art synthesis of the progress being made and the challenges that remain. Medical researchers have long sought to identify single molecular defects that cause diseases, with the goal of developing silver-bullet therapies to treat them. But this paradigm overlooks the inherent complexity of human diseases and has often led to treatments that are inadequate or fraught with adverse side effects. Rather than trying to force disease pathogenesis into a reductionist model, network medicine embraces the complexity of multiple influences on disease and relies on many different types of networks: from the cellular-molecular level of protein-protein interactions to correlational studies of gene expression in biological samples. The authors offer a systematic approach to understanding complex diseases while explaining network medicine’s unique features, including the application of modern genomics technologies, biostatistics and bioinformatics, and dynamic systems analysis of complex molecular networks in an integrative context. By developing techniques and technologies that comprehensively assess genetic variation, cellular metabolism, and protein function, network medicine is opening up new vistas for uncovering causes and identifying cures of disease.

Networks of Networks in Biology

Networks of Networks in Biology PDF Author: Narsis A. Kiani
Publisher: Cambridge University Press
ISBN: 1108428878
Category : Computers
Languages : en
Pages : 215

Get Book Here

Book Description
Introduces network inspired approaches for the analysis and integration of large, heterogeneous data sets in the life sciences.

Introduction to Biological Networks

Introduction to Biological Networks PDF Author: Alpan Raval
Publisher: CRC Press
ISBN: 1420010360
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
The new research area of genomics-inspired network biology lacks an introductory book that enables both physical/computational scientists and biologists to obtain a general yet sufficiently rigorous perspective of current thinking. Filling this gap, Introduction to Biological Networks provides a thorough introduction to genomics-inspired network bi

Systems Biology for Signaling Networks

Systems Biology for Signaling Networks PDF Author: Sangdun Choi
Publisher: Springer Science & Business Media
ISBN: 1441957979
Category : Science
Languages : en
Pages : 900

Get Book Here

Book Description
System Biology encompasses the knowledge from diverse fields such as Molecular Biology, Immunology, Genetics, Computational Biology, Mathematical Biology, etc. not only to address key questions that are not answerable by individual fields alone, but also to help in our understanding of the complexities of biological systems. Whole genome expression studies have provided us the means of studying the expression of thousands of genes under a particular condition and this technique had been widely used to find out the role of key macromolecules that are involved in biological signaling pathways. However, making sense of the underlying complexity is only possible if we interconnect various signaling pathways into human and computer readable network maps. These maps can then be used to classify and study individual components involved in a particular phenomenon. Apart from transcriptomics, several individual gene studies have resulted in adding to our knowledge of key components that are involved in a signaling pathway. It therefore becomes imperative to take into account of these studies also, while constructing our network maps to highlight the interconnectedness of the entire signaling pathways and the role of that particular individual protein in the pathway. This collection of articles will contain a collection of pioneering work done by scientists working in regulatory signaling networks and the use of large scale gene expression and omics data. The distinctive features of this book would be: Act a single source of information to understand the various components of different signaling network (roadmap of biochemical pathways, the nature of a molecule of interest in a particular pathway, etc.), Serve as a platform to highlight the key findings in this highly volatile and evolving field, and Provide answers to various techniques both related to microarray and cell signaling to the readers.

Biomolecular Networks

Biomolecular Networks PDF Author: Luonan Chen
Publisher: John Wiley & Sons
ISBN: 9780470488058
Category : Computers
Languages : en
Pages : 416

Get Book Here

Book Description
Alternative techniques and tools for analyzing biomolecular networks With the recent rapid advances in molecular biology, high-throughput experimental methods have resulted in enormous amounts of data that can be used to study biomolecular networks in living organisms. With this development has come recognition of the fact that a complicated living organism cannot be fully understood by merely analyzing individual components. Rather, it is the interactions of components or biomolecular networks that are ultimately responsible for an organism's form and function. This book addresses the important need for a new set of computational tools to reveal essential biological mechanisms from a systems biology approach. Readers will get comprehensive coverage of analyzing biomolecular networks in cellular systems based on available experimental data with an emphasis on the aspects of network, system, integration, and engineering. Each topic is treated in depth with specific biological problems and novel computational methods: GENE NETWORKS—Transcriptional regulation; reconstruction of gene regulatory networks; and inference of transcriptional regulatory networks PROTEIN INTERACTION NETWORKS—Prediction of protein-protein interactions; topological structure of biomolecular networks; alignment of biomolecular networks; and network-based prediction of protein function METABOLIC NETWORKS AND SIGNALING NETWORKS—Analysis, reconstruction, and applications of metabolic networks; modeling and inference of signaling networks; and other topics and new trends In addition to theoretical results and methods, many computational software tools are referenced and available from the authors' Web sites. Biomolecular Networks is an indispensable reference for researchers and graduate students in bioinformatics, computational biology, systems biology, computer science, and applied mathematics.