Near Surface Composition and Reactivity of Indium Tin Oxide: An Evaluation Towards Surface Chemical Concepts and Relevance in Titanyl Phthalocyanine Photovoltaic Devices

Near Surface Composition and Reactivity of Indium Tin Oxide: An Evaluation Towards Surface Chemical Concepts and Relevance in Titanyl Phthalocyanine Photovoltaic Devices PDF Author: Michael T. Brumbach
Publisher:
ISBN:
Category :
Languages : en
Pages : 706

Get Book Here

Book Description
Photovoltaics manufactured using organic materials as a substitute for inorganic materials may provide for cheaper production of solar cells if their efficiencies can be made comparable to existing technologies. Photovoltaic devices are comprised of layered structures where the electrical, chemical, and physical properties at the multiple interfaces play a significant role in the operation of the completed device. This thesis attempts to establish a relationship between interfacial properties and overall device performance by investigation of both the organic/organic heterojunction interface, as well as the interface between the inorganic substrate and the first organic layer with useful insights towards enhancing the efficiency of organic solar cells. It has been proposed that residual chemical species may act as barriers to charge transfer at the interface between the transparent conductor (TCO) and the first organic layer, possibly causing a large contact resistance and leading to reduced device performance. Previous work has investigated the surface of the TCO but no baseline characterization of carbon-free surfaces has previously been given. In this work clean surfaces are investigated to develop a fundamental understanding of the intrinsic spectra such that further analyses of contaminated surfaces can be presented systematically and reproducibly to develop a chemical model of the TCO surface. The energy level offset at the organic/organic heterojunction has been proposed to relate to the maximum potential achievable for a solar cell under illumination, however, few experimental observations have been made where boththe interface characterization and device performance are presented. Photovoltaic properties are examined in this work with titanyl phthalocyanine used as a novel donor material for enhancement of spectral absorption and optimization of the open-circuit potential. Characterization of the interface between TiOPc and C60 coupled with characterization of the interface between copper phthalocyanine and C60 shows that the higher ionization potential of TiOPc does correlate to greater open circuit potentials. Examination of photovoltaic behavior using equivalent circuit modeling relates the importance of series resistance and recombination to the homogeneity of the solar cell structure.

Near Surface Composition and Reactivity of Indium Tin Oxide: An Evaluation Towards Surface Chemical Concepts and Relevance in Titanyl Phthalocyanine Photovoltaic Devices

Near Surface Composition and Reactivity of Indium Tin Oxide: An Evaluation Towards Surface Chemical Concepts and Relevance in Titanyl Phthalocyanine Photovoltaic Devices PDF Author: Michael T. Brumbach
Publisher:
ISBN:
Category :
Languages : en
Pages : 706

Get Book Here

Book Description
Photovoltaics manufactured using organic materials as a substitute for inorganic materials may provide for cheaper production of solar cells if their efficiencies can be made comparable to existing technologies. Photovoltaic devices are comprised of layered structures where the electrical, chemical, and physical properties at the multiple interfaces play a significant role in the operation of the completed device. This thesis attempts to establish a relationship between interfacial properties and overall device performance by investigation of both the organic/organic heterojunction interface, as well as the interface between the inorganic substrate and the first organic layer with useful insights towards enhancing the efficiency of organic solar cells. It has been proposed that residual chemical species may act as barriers to charge transfer at the interface between the transparent conductor (TCO) and the first organic layer, possibly causing a large contact resistance and leading to reduced device performance. Previous work has investigated the surface of the TCO but no baseline characterization of carbon-free surfaces has previously been given. In this work clean surfaces are investigated to develop a fundamental understanding of the intrinsic spectra such that further analyses of contaminated surfaces can be presented systematically and reproducibly to develop a chemical model of the TCO surface. The energy level offset at the organic/organic heterojunction has been proposed to relate to the maximum potential achievable for a solar cell under illumination, however, few experimental observations have been made where boththe interface characterization and device performance are presented. Photovoltaic properties are examined in this work with titanyl phthalocyanine used as a novel donor material for enhancement of spectral absorption and optimization of the open-circuit potential. Characterization of the interface between TiOPc and C60 coupled with characterization of the interface between copper phthalocyanine and C60 shows that the higher ionization potential of TiOPc does correlate to greater open circuit potentials. Examination of photovoltaic behavior using equivalent circuit modeling relates the importance of series resistance and recombination to the homogeneity of the solar cell structure.

Photovoltaic and Photoactive Materials

Photovoltaic and Photoactive Materials PDF Author: Joseph M. Marshall
Publisher: Springer Science & Business Media
ISBN: 9401006326
Category : Technology & Engineering
Languages : en
Pages : 361

Get Book Here

Book Description
The primary objective of this NATO Advanced Study Institute (ASI) was to present an up-to-date overview of various current areas of interest in the field of photovoltaic and related photoactive materials. This is a wide-ranging subject area, of significant commercial and environmental interest, and involves major contributions from the disciplines of physics, chemistry, materials, electrical and instrumentation engineering, commercial realisation etc. Therefore, we sought to adopt an inter disciplinary approach, bringing together recognised experts in the various fields while retaining a level of treatment accessible to those active in specific individual areas of research and development. The lecture programme commenced with overviews of the present relevance and historical development of the subject area, plus an introduction to various underlying physical principles of importance to the materials and devices to be addressed in later lectures. Building upon this, the ASI then progressed to more detailed aspects of the subject area. We were also fortunately able to obtain a contribution from Thierry Langlois d'Estaintot of the European Commission Directorate, describing present and future EC support for activities in this field. In addition, poster sessions were held throughout the meeting, to allow participants to present and discuss their current activities. These were supported by what proved to be very effective feedback sessions (special thanks to Martin Stutzmann), prior to which groups of participants enthusiastically met (often in the bar) to identify and agree topics of common interest.

Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids

Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids PDF Author: Umar Ibrahim Gaya
Publisher: Springer Science & Business Media
ISBN: 9400777752
Category : Science
Languages : en
Pages : 222

Get Book Here

Book Description
This book underscores the essential principles of photocatalysis and provides an update on its scientific foundations, research advances, and current opinions, and interpretations. It consists of an introduction to the concepts that form the backbone of photocatalysis, from the principles of solid-state chemistry and physics to the role of reactive oxidizing species. Having recognised the organic link with chemical kinetics, part of the book describes kinetic concepts as they apply to photocatalysis. The dependence of rate on the reaction conditions and parameters is detailed, the retrospective and prospective aspects of the mechanism of photocatalysis are highlighted, and the adsorption models, photocatalytic rate expressions, and kinetic disguises are examined. This book also discusses the structure, property, and activity relationship of prototypical semiconductor photocatalysts and reviews how to extend their spectral absorption to the visible region to enable the effective use of visible solar spectrum. Lastly, it presents strategies for deriving substantially improved photoactivity from semiconductor materials to support the latest applications and potential trends.

Organic Photovoltaics

Organic Photovoltaics PDF Author: Sam-Shajing Sun
Publisher: CRC Press
ISBN: 1351837060
Category : Technology & Engineering
Languages : en
Pages : 916

Get Book Here

Book Description
Recently developed organic photovoltaics (OPVs) show distinct advantages over their inorganic counterparts due to their lighter weight, flexible shape, versatile materials synthesis and device fabrication schemes, and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV and inorganic PV materials and devices, few are available that offer a comprehensive overview of recently fast developing organic and polymeric PV materials and devices. Organic Photovoltaics: Mechanisms, Materials, and Devices fills this gap. The book provides an international perspective on the latest research in this rapidly expanding field with contributions from top experts around the world. It presents a unified approach comprising three sections: General Overviews; Mechanisms and Modeling; and Materials and Devices. Discussions include sunlight capture, exciton diffusion and dissociation, interface properties, charge recombination and migration, and a variety of currently developing OPV materials/devices. The book also includes two forewords: one by Nobel Laureate Dr. Alan J. Heeger, and the other by Drs. Aloysius Hepp and Sheila Bailey of NASA Glenn Research Center. Organic Photovoltaics equips students, researchers, and engineers with knowledge of the mechanisms, materials, devices, and applications of OPVs necessary to develop cheaper, lighter, and cleaner renewable energy throughout the coming decades.

Colour Chemistry

Colour Chemistry PDF Author: Robert Christie
Publisher: Royal Society of Chemistry
ISBN: 1847550592
Category : Science
Languages : en
Pages : 218

Get Book Here

Book Description
This book provides an up-to-date insight into the chemistry behind the colour of the dyes and pigments that make our world so colourful. The impressive breadth of coverage starts with a dip into the history of colour science. Colour Chemistry then goes on to look at the structure and synthesis of the various dyes and pigments, along with their applications in the traditional areas of textiles, coatings and plastics, and also the ever-expanding range of "high-tech" applications. Also discussed are some of the environmental issues associated with the manufacture and use of colour. The broad and balanced coverage presented in this book makes it ideal for students and graduates. In addition, many specialists in industry or academia will also benefit from the overview of the subject that is provided.

Clean Electricity From Photovoltaics

Clean Electricity From Photovoltaics PDF Author: Mary D Archer
Publisher: World Scientific
ISBN: 1783262052
Category : Medical
Languages : en
Pages : 870

Get Book Here

Book Description
Photovoltaic cells provide clean, reversible electrical power from the sun. Made from semiconductors, they are durable, silent in operation and free of polluting emissions. In this book, experts from all sectors of the PV community — materials scientists, physicists, production engineers, economists and environmentalists — give their critical appraisals of where the technology is now and what its prospects are./a

Photovoltaic Fundamentals

Photovoltaic Fundamentals PDF Author: Gary Cook
Publisher:
ISBN:
Category : Photoelectric cells
Languages : en
Pages : 70

Get Book Here

Book Description


Multivalency

Multivalency PDF Author: Jurriaan Huskens
Publisher: John Wiley & Sons
ISBN: 1119143462
Category : Science
Languages : en
Pages : 434

Get Book Here

Book Description
Connects fundamental knowledge of multivalent interactions with current practice and state-of-the-art applications Multivalency is a widespread phenomenon, with applications spanning supramolecular chemistry, materials chemistry, pharmaceutical chemistry and biochemistry. This advanced textbook provides students and junior scientists with an excellent introduction to the fundamentals of multivalent interactions, whilst expanding the knowledge of experienced researchers in the field. Multivalency: Concepts, Research & Applications is divided into three parts. Part one provides background knowledge on various aspects of multivalency and cooperativity and presents practical methods for their study. Fundamental aspects such as thermodynamics, kinetics and the principle of effective molarity are described, and characterisation methods, experimental methodologies and data treatment methods are also discussed. Parts two and three provide an overview of current systems in which multivalency plays an important role in chemistry and biology, with a focus on the design rules, underlying chemistry and the fundamental principles of multivalency. The systems covered range from chemical/materials-based ones such as dendrimers and sensors, to biological systems including cell recognition and protein binding. Examples and case studies from biochemistry/bioorganic chemistry as well as synthetic systems feature throughout the book. Introduces students and young scientists to the field of multivalent interactions and assists experienced researchers utilising the methodologies in their work Features examples and case studies from biochemistry/bioorganic chemistry, as well as synthetic systems throughout the book Edited by leading experts in the field with contributions from established scientists Multivalency: Concepts, Research & Applications is recommended for graduate students and junior scientists in supramolecular chemistry and related fields, looking for an introduction to multivalent interactions. It is also highly useful to experienced academics and scientists in industry working on research relating to multivalent and cooperative systems in supramolecular chemistry, organic chemistry, pharmaceutical chemistry, chemical biology, biochemistry, materials science and nanotechnology.

Environmental Electrochemistry

Environmental Electrochemistry PDF Author: Krishnan Rajeshwar
Publisher: Elsevier
ISBN: 0080531091
Category : Technology & Engineering
Languages : en
Pages : 793

Get Book Here

Book Description
The first book of its kind, Environmental Electrochemistry considers the role that electrochemical science and engineering can play in environmental remediation, pollution targeting, and pollutant recycling. Electrochemical-based sensors and abatement technologies for the detection, quantification, and treatment of environmental pollutants are described. Each chapter includes an extensive listing of supplemental readings, with illustrations throughout the bookto clarify principles and approaches detailed in the text. The first book to review electro- and photoelectrochemical technologies for environmental remediation, pollution sensors and pollutant recycling Applicable to a broad audience of environmental scientists and practicing electrochemists Includes both laboratory concepts and practical applications

Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications

Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications PDF Author: Olena Fesenko
Publisher: Springer
ISBN: 3030177556
Category : Science
Languages : en
Pages : 473

Get Book Here

Book Description
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 6th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2018) in Kiev, Ukraine on August 27-30, 2018 organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on nanooptics, energy storage and biomedical applications. This book's companion volume also addresses topics such as materials properties, behavior, and synthesis.