Near-field Phenomena in Resonant and Nonlinear Photonic Nanostructures

Near-field Phenomena in Resonant and Nonlinear Photonic Nanostructures PDF Author: Wataru Nakagawa
Publisher:
ISBN:
Category :
Languages : en
Pages : 290

Get Book Here

Book Description


Optical Near Fields

Optical Near Fields PDF Author: Motoichi Ohtsu
Publisher: Springer Science & Business Media
ISBN: 9783540404835
Category : Science
Languages : en
Pages : 230

Get Book Here

Book Description
This book outlines physically intuitive concepts and theories for students, engineers, and scientists who will be engaged in research in nanophotonics and atom photonics. The main topic is the optical near ?eld, i.e., the thin ?lm of light that is localized on the surface of a nanometric material. In the early 1980s, one of the authors (M. Ohtsu) started his pioneering research on optical near ?elds because he judged that nanometer-sized light would be required to shift the paradigm of optical science and technology. This ?eld of research did not exist previously, and was not compatible with trends in opticalscienceandtechnology.However,hewasencouragedbytheknowledge that scientists in other countries started similar research in the mid 1980s. In the 1990s, optical technology progressed very rapidly and the p- tonics industry developed, but further progress became di?cult due to the fundamental limit of light known as the di?raction limit. However, there was a growing awareness among scientists and engineers that this limit can be overcome using optical near ?elds. Since a drastic paradigm shift in the c- cepts of optics is required to understand the intrinsic nature of optical near ?elds, the demand for a textbook on this subject has increased. The present book aims to meet this demand.

Near-Field Nano-Optics

Near-Field Nano-Optics PDF Author: Motoichi Ohtsu
Publisher: Springer Science & Business Media
ISBN: 1461548357
Category : Technology & Engineering
Languages : en
Pages : 397

Get Book Here

Book Description
Conventional optical science and technology have been restricted by the diffraction limit from reducing the sizes of optical and photoruc devices to nanometric dimensions. Thus, the size of optical integrated circuits has been incompatible with that of their counterpart, integrated electronic circuits, which have much smaller dimensions. This book provides potential ideas and methods to overcome this difficulty. Near-field optics has developed very rapidly from around the middle 1980s after preliminary trials in the microwave frequency region, as proposed as early as 1928. At the early stages of this development, most technical efforts were devoted to realizing super-high-resolution optical microscopy beyond the diffraction limit. However, the possibility of exploiting the optical near-field, phenomenon of quasistatic electromagnetic interaction at subwavelength distances between nanometric particles has opened new ways to nanometric optical science and technology, and many applications to nanometric fabrication and manipulation have been proposed and implemented. Building on this historical background, this book describes recent progress in near-field optical science and technology, mainly using research of the author's groups. The title of this book, Near-Field Nano-Optics-From Basic Principles to Nano-Fabrication and Nano-Photonics, implies capabilities of the optical near field not only for imaging/microscopy, but also for fabrication/manipulation/proc essing on a nanometric scale.

Nano-Structures for Optics and Photonics

Nano-Structures for Optics and Photonics PDF Author: Baldassare Di Bartolo
Publisher: Springer
ISBN: 9401791333
Category : Science
Languages : en
Pages : 589

Get Book Here

Book Description
The contributions in this volume were presented at a NATO Advanced Study Institute held in Erice, Italy, 4-19 July 2013. Many aspects of important research into nanophotonics, plasmonics, semiconductor materials and devices, instrumentation for bio sensing to name just a few, are covered in depth in this volume. The growing connection between optics and electronics, due to the increasing important role plaid by semiconductor materials and devices, find their expression in the term photonics, which also reflects the importance of the photon aspect of light in the description of the performance of several optical systems. Nano-structures have unique capabilities that allow the enhanced performance of processes of interest in optical and photonic devices. In particular these structures permit the nanoscale manipulation of photons, electrons and atoms; they represent a very hot topic of research and are relevant to many devices and applications. The various subjects bridge over the disciplines of physics, biology and chemistry, making this volume of interest to people working in these fields. The emphasis is on the principles behind each technique and on examining the full potential of each technique.

Metal Nanostructures for Photonics

Metal Nanostructures for Photonics PDF Author: Luciana Reyes Pires Kassab
Publisher: Elsevier
ISBN: 0081023790
Category : Science
Languages : en
Pages : 360

Get Book Here

Book Description
Metal Nanostructures for Photonics presents updates on the development of materials with enhanced optical properties and the demand for novel metal-dielectric nanocomposites and nanostructured materials. The book covers various aspects of metal-dielectric nanocomposites and metallic-nanostructures and illustrates techniques used to prepare and characterize materials and their physical properties. It focuses on three main sections, nanocomposites with enhanced luminescence properties due to contributions of metal nanoparticles hosted in photonic glasses, near and far-field optical phenomena, and the optical response of single nanoparticles that reveal quantum phenomena in the nanoscale, amongst other topics. This book will serve as an important research reference for materials scientists who want to learn more on how a range of metallic nanostructured materials are used in photonics. Sets out the properties of a range of metal-dielectric nanostructures and nanocomposites, along with the use cases for each in photonics Discusses the pros and cons of using different metallic nanostructures for different photonic applications Includes case studies that illustrate how metallic nanostructures have successfully been applied in photonics

Optical Properties of Nanostructures

Optical Properties of Nanostructures PDF Author: Ying Fu
Publisher: Pan Stanford Publishing
ISBN: 9814303267
Category : Science
Languages : en
Pages : 330

Get Book Here

Book Description
This book discusses electrons and photons in and through nanostructures by the first-principles quantum mechanical theories and fundamental concepts (a unified coverage of nanostructured electronic and optical components) behind nanoelectronics and optoelectronics, the material basis, physical phenomena, device physics, as well as designs and applications. The combination of viewpoints presented in the book can help foster further research and cross-disciplinary interaction needed to surmount the barriers facing future generations of technology design.

Nanoscale Light-matter Interactions in the Near-field of High-Q Microresonators

Nanoscale Light-matter Interactions in the Near-field of High-Q Microresonators PDF Author: Ali Asghar Eftekhar
Publisher:
ISBN:
Category : Near-field microscopy
Languages : en
Pages :

Get Book Here

Book Description
The light-matter interaction in the near-field of high-Q resonators in SOI and SiN platforms is studied. The interactions of high-Q traveling-wave resonators with both resonant and non-resonant nanoparticles are studied and different applications based on this enhanced interactions in near-field such as high-resolution imaging of mode profile of high-Q resonators, label-free sensing, optical trapping, and SERS sensing are investigated. A near-field imaging system for the investigation of the near-field phenomena in the near-field of high-Q resonators is realized. A new technique for high-resolution imaging of the optical modes in high-Q resonators based on the near-field perturbation is developed that enables to achieve a very high resolution (

Large-area Resonant and Non-resonant Optical Nanostructures

Large-area Resonant and Non-resonant Optical Nanostructures PDF Author: Ping-Chun Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 198

Get Book Here

Book Description
Manipulation of light via subwavelength nanostructures is currently a subject of intense research interest, and is enabling the development of nanostructured photonic crystal, metamaterials and metasurfaces that provide a variety of new optical and electromagnetic functionalities, or that enable existing functionalities to be realized in new and often extremely compact form factors. This dissertation will include wide-angle wavelength-selective metasurface, omnidirectional enhancement in photovoltaic performance via subwavelength gradient anti-reflection coating, and applications of birefringent nanocylinders for single-molecule spectroscopy. In wide-angle wavelength-selective metasurface, high and broad reflectance (~95%) with low absorption (5%) are shown to be achieved with multilayer metasurface structures. These characteristics are shown to be independent of interlayer misalignment and defects within individual layers. Interactions between different metasurface layers due to Fabry-Perot resonance are also examined with analytical models and numerical simulations. Wavelength-selective focusing at optical wavelengths which is enabled by large-area nanosphere lithography on a flexible substrate is demonstrated. In omnidirectional enhancement in photovoltaic performance via subwavelength gradient anti-reflection coating, large-area "moth-eye" structure fabricated on a flexible substrate is shown to have high transmittance (85%) at large angle of incidences (>70°) and insensitivity to polarizations. Integration of the "moth-eye" anti-reflection coating together with nanostructured gradient A12O3/TiO2 on a GaAs solar cell shows significant improvements on external quantum efficiency (EQE) and short circuit current over all angle of incidences compared with conventional thin film anti-reflection coating. Detailed design, simulation, and fabrication of these nanostructured anti-reflection coating for reducing the discontinuity in refractive index profile will also be discussed. In application of birefringent nanocylinders for single-molecule spectroscopy, the design and fabrication method for large quantity of subwavelength birefringent nanoparticle are also discussed. These birefringent nanoparticles are shown to be stably trapped in an optical torque wrench setup, and enable observation of the dynamical response of a double-stranded DNA under torsional and extensional forces.

Near-field Nano/Atom Optics and Technology

Near-field Nano/Atom Optics and Technology PDF Author: Motoichi Ohtsu
Publisher: Springer
ISBN: 9784431702283
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
Intrinsic features of the optical near field open a new frontier in optical science and technology by finally overcoming the diffraction limit to reach nanometric dimensions. But this book goes beyond near-field optical microscopy to cover local spectroscopy, nanoscale optical processing and storage, quantum near-field optics, and atom manipulation. Near-Field Nano/Atom Optics and Technology provides the first complete and systematically compiled account of the science and technology required to generate the near field, and features applications including imaging of biological specimens and diagnostics for semiconductor nanomaterials and devices. This monograph will be invaluable to researchers who want to implement near-field technology in their own work, and it can also be used as a textbook for graduate or undergraduate students.

Attosecond Nanophysics

Attosecond Nanophysics PDF Author: Peter Hommelhoff
Publisher: John Wiley & Sons
ISBN: 352766565X
Category : Science
Languages : en
Pages : 392

Get Book Here

Book Description
The first broad and in-depth overview of current research in attosecond nanophysics, covering the field of active plasmonics via attosecond science in metals and dielectrics to novel imaging techniques with the highest spatial and temporal resolution. The authors are pioneers in the field and present here new developments and potential novel applications for ultra-fast data communication and processing, discussing the investigation of the natural timescale of electron dynamics in nanoscale solid state systems. Both an introduction for starting graduate students, as well as a look at the current state of the art in this hot and emerging field.