Navier-Stokes Simulations of Unsteady Transonic Flow Phenomena

Navier-Stokes Simulations of Unsteady Transonic Flow Phenomena PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781723230561
Category :
Languages : en
Pages : 148

Get Book Here

Book Description
Numerical simulations of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times. While the blast-wave/target interaction problem benefits from high-resolution methods applied to the Euler terms, the transonic cavity flow problem requires the use of an efficient scheme implemented in a geometrically flexible overset mesh environment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a diagonal form are applied to the cavity flow class of problems. Comparisons between numerical and experimental results are made in two-dimensions for free shear layers and both rectangular and quieted cavities, and in three-dimensions for Stratospheric Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of the rectangular and three-dimensional cavity flows compare well with experiment in terms of frequency, magnitude, and quieting trends. However, there is a more rapid decrease in computed acoustic energy with frequency than observed experimentally owing to numerical dissipatio...

Navier-Stokes Simulations of Unsteady Transonic Flow Phenomena

Navier-Stokes Simulations of Unsteady Transonic Flow Phenomena PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781723230561
Category :
Languages : en
Pages : 148

Get Book Here

Book Description
Numerical simulations of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times. While the blast-wave/target interaction problem benefits from high-resolution methods applied to the Euler terms, the transonic cavity flow problem requires the use of an efficient scheme implemented in a geometrically flexible overset mesh environment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a diagonal form are applied to the cavity flow class of problems. Comparisons between numerical and experimental results are made in two-dimensions for free shear layers and both rectangular and quieted cavities, and in three-dimensions for Stratospheric Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of the rectangular and three-dimensional cavity flows compare well with experiment in terms of frequency, magnitude, and quieting trends. However, there is a more rapid decrease in computed acoustic energy with frequency than observed experimentally owing to numerical dissipatio...

Navier-Stokes Simulations of Unsteady Transonic Flow Phenomena

Navier-Stokes Simulations of Unsteady Transonic Flow Phenomena PDF Author: Christopher Alexander Atwood
Publisher:
ISBN:
Category :
Languages : en
Pages : 152

Get Book Here

Book Description
Numerical simulation of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times.based systems ]

Numerical Simulation of Compressible Navier-Stokes Flows

Numerical Simulation of Compressible Navier-Stokes Flows PDF Author: Marie Odile Bristeau
Publisher: Springer Science & Business Media
ISBN: 3322878732
Category : Technology & Engineering
Languages : en
Pages : 350

Get Book Here

Book Description
With the advent of super computers during the last ten years, the numerical simulation of viscous fluid flows modeled by the Navier-Stokes equations is becoming a most useful tool in Aircraft and Engine Design. In fact, compressible Navier-Stokes solvers tend to constitute the basic tools for many industrial applications occuring in the simulation of very complex turbulent and combustion phenomena. In Aerospace Engineering, as an exemple, their mathematical modelization requires reliable and robust methods for solving very stiff non linear partial differential equations. For the above reasons, it was clear that a workshop on this topic would be of interest for the CFD community in order to compare accuracy and efficiency of Navier-Stokes solvers on selected external and internal flow problems using different numerical approaches. The workshop was held on 4-6 December 1985 at Nice, France and organized by INRIA with the sponsorship of the GAMM Committee on Numerical Methods in Fluid Mechanics.

Research Directions in Computational Mechanics

Research Directions in Computational Mechanics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309046483
Category : Technology & Engineering
Languages : en
Pages : 145

Get Book Here

Book Description
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 542

Get Book Here

Book Description


Unsteady Transonic Aerodynamics

Unsteady Transonic Aerodynamics PDF Author: David Nixon
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 410

Get Book Here

Book Description
This volume complements Transonic aerodynamics (v.81 in the series) which is concerned with steady flow. This is the only book to address the subject of unsteady transonic aerodynamics, a field much different from steady aerodynamics. The most pronounced difference is the complex shock wave motions

Unsteady Transonic Aerodynamics

Unsteady Transonic Aerodynamics PDF Author: David Nixon
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 410

Get Book Here

Book Description
This volume complements Transonic aerodynamics (v.81 in the series) which is concerned with steady flow. This is the only book to address the subject of unsteady transonic aerodynamics, a field much different from steady aerodynamics. The most pronounced difference is the complex shock wave motions

Progress in Computational Flow-Structure Interaction

Progress in Computational Flow-Structure Interaction PDF Author: Werner Haase
Publisher: Springer Science & Business Media
ISBN: 3540454896
Category : Technology & Engineering
Languages : en
Pages : 381

Get Book Here

Book Description
Aircraft design processes require extensive work in the area of both aerodynamics and structure, fonning an environment for aeroelasticity investigations. Present and future designs of European aircraft are characterized by an ever increasing aircraft size and perfonnance. Strong weight saving requirements are met by introduction of new materials, leading to more flexible structure of the aircraft. Consequently, aeroelastic phenomena such as vortex-induced aeroelastic oscillations and moving shock waves can be predominant and may have a significant effect on the aircraft perfonnance. Hence, the ability to estimate reliable margins for aeroelastic instabilities (flutter) or dynamic loads (buffeting) is a major concern to the aircraft designer. As modern aircrafts have wing bending modes with frequencies that are low enough to influence the flight control system, demands on unsteady aerodynamics and structural analysis to predict flight control effectiveness and riding comfort for passengers are extremely high. Therefore, the aircraft industries need an improved capacity of robust, accurate and reliable prediction methods in the coupled aeroelastic, flight mechanics and loads disciplines. In particular, it is necessary to develop/improve and calibrate the numerical tools in order to predict with high level of accuracy and capability complex and non-classical aeroelastic phenomena, including aerodynamic non-linearities, such as shock waves and separation, as well as structural non-linearities, e. g. control surface free-play. Nowadays, robust methods for structural analysis and linearised unsteady aerodynamics are coupled and used by the aircraft industry to computationally clear a new design from flutter.

NAS Technical Summaries

NAS Technical Summaries PDF Author:
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 182

Get Book Here

Book Description


NASA SP.

NASA SP. PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 232

Get Book Here

Book Description