Navier-Stokes Equations and Related Nonlinear Problems

Navier-Stokes Equations and Related Nonlinear Problems PDF Author: Herbert Amann
Publisher: VSP
ISBN: 9789067642880
Category : Science
Languages : en
Pages : 458

Get Book Here

Book Description
This volume contains a selection of invited lectures and contributed papers which were delivered at the Sixth International Conference on Navier-Stokes Equations and Related Nonlinear Problems, held in Palanga, Lithuania, 22-29 May 1997. While the emphasis was on the mathematical foundation of fluid dynamics, related contributions on nonlinear and numerical analysis were discussed as well. The topics covered include: incompressible fluids described by Navier-Stokes equations, compressible fluids, non-Newtonian fluids, free boundary problems, equations from thermo- and magnetohydrodynamcis, asymptotic analysis, stability, and related problems of nonlinear and numerical analysis.

Navier-Stokes Equations and Related Nonlinear Problems

Navier-Stokes Equations and Related Nonlinear Problems PDF Author: Herbert Amann
Publisher: VSP
ISBN: 9789067642880
Category : Science
Languages : en
Pages : 458

Get Book Here

Book Description
This volume contains a selection of invited lectures and contributed papers which were delivered at the Sixth International Conference on Navier-Stokes Equations and Related Nonlinear Problems, held in Palanga, Lithuania, 22-29 May 1997. While the emphasis was on the mathematical foundation of fluid dynamics, related contributions on nonlinear and numerical analysis were discussed as well. The topics covered include: incompressible fluids described by Navier-Stokes equations, compressible fluids, non-Newtonian fluids, free boundary problems, equations from thermo- and magnetohydrodynamcis, asymptotic analysis, stability, and related problems of nonlinear and numerical analysis.

Navier—Stokes Equations and Related Nonlinear Problems

Navier—Stokes Equations and Related Nonlinear Problems PDF Author: Adélia Sequeira
Publisher: Springer Science & Business Media
ISBN: 1489914153
Category : Science
Languages : en
Pages : 393

Get Book Here

Book Description
This volume contains the Proceedings of the Third International Conference on Navier-Stokes Equations and Related Nonlinear Problems. The conference was held in Funchal (Madeira, Portugal), on May 21-27, 1994. In addition to the editor, the organizers were Carlos Albuquerque (FC, University of Lisbon), Casimiro Silva (University of Madeira) and Juha Videman (1ST, Technical University of Lisbon). This meeting, following two other successful events of similar type held in Thurnau (Germany) in 1992 and in Cento (Italy) in 1993, brought together, to the majestically beautiful island of Madeira, more than 60 specialists from all around the world, of which about two thirds were invited lecturers. The main interest of the meeting was focused on the mathematical analysis of nonlinear phenomena in fluid mechanics. During the conference, we noticed that this area seems to provide, today more than ever, challenging and increasingly important problems motivating the research of both theoretical and numerical analysts. This volume collects 32 articles selected from the invited lectures and contributed papers given during the conference. The main topics covered include: Flows in Unbounded Domains; Flows in Bounded Domains; Compressible Fluids; Free Boundary Problems; Non-Newtonian Fluids; Related Problems and Numerical Approximations. The contributions present original results or new surveys on recent developments, giving directions for future research. I express my gratitude to all the authors and I am glad to recognize the scientific level and the actual interest of the articles.

Initial-boundary Value Problems and the Navier-Stokes Equations

Initial-boundary Value Problems and the Navier-Stokes Equations PDF Author: Heinz-Otto Kreiss
Publisher: SIAM
ISBN: 0898719135
Category : Science
Languages : en
Pages : 408

Get Book Here

Book Description
Annotation This book provides an introduction to the vast subject of initial and initial-boundary value problems for PDEs, with an emphasis on applications to parabolic and hyperbolic systems. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. Researchers and graduate students in applied mathematics and engineering will find Initial-Boundary Value Problems and the Navier-Stokes Equations invaluable. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. There are many new results, in particular on the Navier-Stokes equations. The direct approach to the subject still gives a valuable introduction to an important area of applied analysis.

Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations andRelated Models

Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations andRelated Models PDF Author: Franck Boyer
Publisher: Springer Science & Business Media
ISBN: 1461459753
Category : Mathematics
Languages : en
Pages : 538

Get Book Here

Book Description
The objective of this self-contained book is two-fold. First, the reader is introduced to the modelling and mathematical analysis used in fluid mechanics, especially concerning the Navier-Stokes equations which is the basic model for the flow of incompressible viscous fluids. Authors introduce mathematical tools so that the reader is able to use them for studying many other kinds of partial differential equations, in particular nonlinear evolution problems. The background needed are basic results in calculus, integration, and functional analysis. Some sections certainly contain more advanced topics than others. Nevertheless, the authors’ aim is that graduate or PhD students, as well as researchers who are not specialized in nonlinear analysis or in mathematical fluid mechanics, can find a detailed introduction to this subject. .

Navier-Stokes Equations

Navier-Stokes Equations PDF Author: Peter Constantin
Publisher: University of Chicago Press
ISBN: 0226115496
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
Lecture notes of graduate courses given by the authors at Indiana University (1985-86) and the University of Chicago (1986-87). Paper edition, $14.95. Annotation copyright Book News, Inc. Portland, Or.

Navier-stokes Equations In Planar Domains

Navier-stokes Equations In Planar Domains PDF Author: Matania Ben-artzi
Publisher: World Scientific
ISBN: 1783263016
Category : Mathematics
Languages : en
Pages : 315

Get Book Here

Book Description
This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as “driven cavity” and “double-driven cavity”.A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a “pure streamfunction” approach. In particular, a complete proof of convergence is given for the full nonlinear problem.This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics./a

Nonlinear Problems in Mathematical Physics and Related Topics

Nonlinear Problems in Mathematical Physics and Related Topics PDF Author: Michael Sh. Birman
Publisher: Springer Science & Business Media
ISBN: 9780306474224
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
The main topics in this volume reflect the fields of mathematics in which Professor O.A. Ladyzhenskaya obtained her most influential results. One of the main topics considered is the set of Navier-Stokes equations and their solutions.

The Navier-Stokes Equations

The Navier-Stokes Equations PDF Author: Hermann Sohr
Publisher: Springer Science & Business Media
ISBN: 3034805519
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.

Applied Analysis of the Navier-Stokes Equations

Applied Analysis of the Navier-Stokes Equations PDF Author: Charles R. Doering
Publisher: Cambridge University Press
ISBN: 9780521445689
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This introductory physical and mathematical presentation of the Navier-Stokes equations focuses on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion.

Navier–Stokes Equations

Navier–Stokes Equations PDF Author: Grzegorz Łukaszewicz
Publisher: Springer
ISBN: 331927760X
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
This volume is devoted to the study of the Navier–Stokes equations, providing a comprehensive reference for a range of applications: from advanced undergraduate students to engineers and professional mathematicians involved in research on fluid mechanics, dynamical systems, and mathematical modeling. Equipped with only a basic knowledge of calculus, functional analysis, and partial differential equations, the reader is introduced to the concept and applications of the Navier–Stokes equations through a series of fully self-contained chapters. Including lively illustrations that complement and elucidate the text, and a collection of exercises at the end of each chapter, this book is an indispensable, accessible, classroom-tested tool for teaching and understanding the Navier–Stokes equations. Incompressible Navier–Stokes equations describe the dynamic motion (flow) of incompressible fluid, the unknowns being the velocity and pressure as functions of location (space) and time variables. A solution to these equations predicts the behavior of the fluid, assuming knowledge of its initial and boundary states. These equations are one of the most important models of mathematical physics: although they have been a subject of vivid research for more than 150 years, there are still many open problems due to the nature of nonlinearity present in the equations. The nonlinear convective term present in the equations leads to phenomena such as eddy flows and turbulence. In particular, the question of solution regularity for three-dimensional problem was appointed by Clay Institute as one of the Millennium Problems, the key problems in modern mathematics. The problem remains challenging and fascinating for mathematicians, and the applications of the Navier–Stokes equations range from aerodynamics (drag and lift forces), to the design of watercraft and hydroelectric power plants, to medical applications such as modeling the flow of blood in the circulatory system.