Author: Hermann Helbig
Publisher: Springer Science & Business Media
ISBN: 3540299661
Category : Computers
Languages : en
Pages : 652
Book Description
Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the pres- vation of cultural achievements and their transmission from one generation to the other. During the last few decades, the ?ood of digitalized information has been growing tremendously. This tendency will continue with the globali- tion of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical und- standing and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this c- text, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the g- eration of natural language expressions from formal representations. This book presents a method for the semantic representation of natural l- guage expressions (texts, sentences, phrases, etc. ) which can be used as a u- versal knowledge representation paradigm in the human sciences, like lingu- tics, cognitive psychology, or philosophy of language, as well as in com- tational linguistics and in arti?cial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.
Knowledge Representation and the Semantics of Natural Language
Author: Hermann Helbig
Publisher: Springer Science & Business Media
ISBN: 3540299661
Category : Computers
Languages : en
Pages : 652
Book Description
Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the pres- vation of cultural achievements and their transmission from one generation to the other. During the last few decades, the ?ood of digitalized information has been growing tremendously. This tendency will continue with the globali- tion of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical und- standing and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this c- text, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the g- eration of natural language expressions from formal representations. This book presents a method for the semantic representation of natural l- guage expressions (texts, sentences, phrases, etc. ) which can be used as a u- versal knowledge representation paradigm in the human sciences, like lingu- tics, cognitive psychology, or philosophy of language, as well as in com- tational linguistics and in arti?cial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.
Publisher: Springer Science & Business Media
ISBN: 3540299661
Category : Computers
Languages : en
Pages : 652
Book Description
Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the pres- vation of cultural achievements and their transmission from one generation to the other. During the last few decades, the ?ood of digitalized information has been growing tremendously. This tendency will continue with the globali- tion of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical und- standing and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this c- text, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the g- eration of natural language expressions from formal representations. This book presents a method for the semantic representation of natural l- guage expressions (texts, sentences, phrases, etc. ) which can be used as a u- versal knowledge representation paradigm in the human sciences, like lingu- tics, cognitive psychology, or philosophy of language, as well as in com- tational linguistics and in arti?cial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.
Representation Learning for Natural Language Processing
Author: Zhiyuan Liu
Publisher: Springer Nature
ISBN: 9811555737
Category : Computers
Languages : en
Pages : 319
Book Description
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Publisher: Springer Nature
ISBN: 9811555737
Category : Computers
Languages : en
Pages : 319
Book Description
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Natural Language Processing and Knowledge Representation
Author: Łucja M. Iwańska
Publisher: AAAI Press
ISBN:
Category : Computers
Languages : en
Pages : 490
Book Description
"Traditionally, knowledge representation and reasoning systems have incorporated natural language as interfaces to expert systems or knowledge bases that performed tasks separate from natural language processing. As this book shows, however, the computational nature of representation and inference in natural language makes it the ideal model for all tasks in an intelligent computer system. Natural language processing combines the qualitative characteristics of human knowledge processing with a computer's quantitative advantages, allowing for in-depth, systematic processing of vast amounts of information.
Publisher: AAAI Press
ISBN:
Category : Computers
Languages : en
Pages : 490
Book Description
"Traditionally, knowledge representation and reasoning systems have incorporated natural language as interfaces to expert systems or knowledge bases that performed tasks separate from natural language processing. As this book shows, however, the computational nature of representation and inference in natural language makes it the ideal model for all tasks in an intelligent computer system. Natural language processing combines the qualitative characteristics of human knowledge processing with a computer's quantitative advantages, allowing for in-depth, systematic processing of vast amounts of information.
A Knowledge Representation Practionary
Author: Michael K. Bergman
Publisher: Springer
ISBN: 3319980920
Category : Computers
Languages : en
Pages : 462
Book Description
This major work on knowledge representation is based on the writings of Charles S. Peirce, a logician, scientist, and philosopher of the first rank at the beginning of the 20th century. This book follows Peirce's practical guidelines and universal categories in a structured approach to knowledge representation that captures differences in events, entities, relations, attributes, types, and concepts. Besides the ability to capture meaning and context, the Peircean approach is also well-suited to machine learning and knowledge-based artificial intelligence. Peirce is a founder of pragmatism, the uniquely American philosophy. Knowledge representation is shorthand for how to represent human symbolic information and knowledge to computers to solve complex questions. KR applications range from semantic technologies and knowledge management and machine learning to information integration, data interoperability, and natural language understanding. Knowledge representation is an essential foundation for knowledge-based AI. This book is structured into five parts. The first and last parts are bookends that first set the context and background and conclude with practical applications. The three main parts that are the meat of the approach first address the terminologies and grammar of knowledge representation, then building blocks for KR systems, and then design, build, test, and best practices in putting a system together. Throughout, the book refers to and leverages the open source KBpedia knowledge graph and its public knowledge bases, including Wikipedia and Wikidata. KBpedia is a ready baseline for users to bridge from and expand for their own domain needs and applications. It is built from the ground up to reflect Peircean principles. This book is one of timeless, practical guidelines for how to think about KR and to design knowledge management (KM) systems. The book is grounded bedrock for enterprise information and knowledge managers who are contemplating a new knowledge initiative. This book is an essential addition to theory and practice for KR and semantic technology and AI researchers and practitioners, who will benefit from Peirce's profound understanding of meaning and context.
Publisher: Springer
ISBN: 3319980920
Category : Computers
Languages : en
Pages : 462
Book Description
This major work on knowledge representation is based on the writings of Charles S. Peirce, a logician, scientist, and philosopher of the first rank at the beginning of the 20th century. This book follows Peirce's practical guidelines and universal categories in a structured approach to knowledge representation that captures differences in events, entities, relations, attributes, types, and concepts. Besides the ability to capture meaning and context, the Peircean approach is also well-suited to machine learning and knowledge-based artificial intelligence. Peirce is a founder of pragmatism, the uniquely American philosophy. Knowledge representation is shorthand for how to represent human symbolic information and knowledge to computers to solve complex questions. KR applications range from semantic technologies and knowledge management and machine learning to information integration, data interoperability, and natural language understanding. Knowledge representation is an essential foundation for knowledge-based AI. This book is structured into five parts. The first and last parts are bookends that first set the context and background and conclude with practical applications. The three main parts that are the meat of the approach first address the terminologies and grammar of knowledge representation, then building blocks for KR systems, and then design, build, test, and best practices in putting a system together. Throughout, the book refers to and leverages the open source KBpedia knowledge graph and its public knowledge bases, including Wikipedia and Wikidata. KBpedia is a ready baseline for users to bridge from and expand for their own domain needs and applications. It is built from the ground up to reflect Peircean principles. This book is one of timeless, practical guidelines for how to think about KR and to design knowledge management (KM) systems. The book is grounded bedrock for enterprise information and knowledge managers who are contemplating a new knowledge initiative. This book is an essential addition to theory and practice for KR and semantic technology and AI researchers and practitioners, who will benefit from Peirce's profound understanding of meaning and context.
Knowledge Representation, Reasoning, and the Design of Intelligent Agents
Author: Michael Gelfond
Publisher: Cambridge University Press
ISBN: 1107782872
Category : Computers
Languages : en
Pages : 363
Book Description
Knowledge representation and reasoning is the foundation of artificial intelligence, declarative programming, and the design of knowledge-intensive software systems capable of performing intelligent tasks. Using logical and probabilistic formalisms based on answer set programming (ASP) and action languages, this book shows how knowledge-intensive systems can be given knowledge about the world and how it can be used to solve non-trivial computational problems. The authors maintain a balance between mathematical analysis and practical design of intelligent agents. All the concepts, such as answering queries, planning, diagnostics, and probabilistic reasoning, are illustrated by programs of ASP. The text can be used for AI-related undergraduate and graduate classes and by researchers who would like to learn more about ASP and knowledge representation.
Publisher: Cambridge University Press
ISBN: 1107782872
Category : Computers
Languages : en
Pages : 363
Book Description
Knowledge representation and reasoning is the foundation of artificial intelligence, declarative programming, and the design of knowledge-intensive software systems capable of performing intelligent tasks. Using logical and probabilistic formalisms based on answer set programming (ASP) and action languages, this book shows how knowledge-intensive systems can be given knowledge about the world and how it can be used to solve non-trivial computational problems. The authors maintain a balance between mathematical analysis and practical design of intelligent agents. All the concepts, such as answering queries, planning, diagnostics, and probabilistic reasoning, are illustrated by programs of ASP. The text can be used for AI-related undergraduate and graduate classes and by researchers who would like to learn more about ASP and knowledge representation.
Readings in Knowledge Representation
Author: Ronald J. Brachman
Publisher: Morgan Kaufmann Publishers
ISBN:
Category : Computers
Languages : en
Pages : 602
Book Description
In Artificial Intelligence, it is often said that the representation of knowledge is the key to the design of robust intelligent systems. In one form or another the principles of Knowledge Representation are fundamental to work in natural language processing, computer vision, knowledge-based expert systems, and other areas. The papers reprinted in this volume have been collected to allow the reader with a general technical background in AI to explore the subtleties of this key subarea. These seminal articles, spanning a quarter-century of research, cover the most important ideas and developments in the representation field. The editors introduce each paper, discuss its relevance and context, and provide an extensive bibliography of other work. "Readings in Knowledge Representation" is intended to serve as a complete sourcebook for the study of this crucial subject.
Publisher: Morgan Kaufmann Publishers
ISBN:
Category : Computers
Languages : en
Pages : 602
Book Description
In Artificial Intelligence, it is often said that the representation of knowledge is the key to the design of robust intelligent systems. In one form or another the principles of Knowledge Representation are fundamental to work in natural language processing, computer vision, knowledge-based expert systems, and other areas. The papers reprinted in this volume have been collected to allow the reader with a general technical background in AI to explore the subtleties of this key subarea. These seminal articles, spanning a quarter-century of research, cover the most important ideas and developments in the representation field. The editors introduce each paper, discuss its relevance and context, and provide an extensive bibliography of other work. "Readings in Knowledge Representation" is intended to serve as a complete sourcebook for the study of this crucial subject.
Handbook of Research on Natural Language Processing and Smart Service Systems
Author: Pazos-Rangel, Rodolfo Abraham
Publisher: IGI Global
ISBN: 1799847314
Category : Computers
Languages : en
Pages : 554
Book Description
Natural language processing (NLP) is a branch of artificial intelligence that has emerged as a prevalent method of practice for a sizeable amount of companies. NLP enables software to understand human language and process complex data that is generated within businesses. In a competitive market, leading organizations are showing an increased interest in implementing this technology to improve user experience and establish smarter decision-making methods. Research on the application of intelligent analytics is crucial for professionals and companies who wish to gain an edge on the opposition. The Handbook of Research on Natural Language Processing and Smart Service Systems is a collection of innovative research on the integration and development of intelligent software tools and their various applications within professional environments. While highlighting topics including discourse analysis, information retrieval, and advanced dialog systems, this book is ideally designed for developers, practitioners, researchers, managers, engineers, academicians, business professionals, scholars, policymakers, and students seeking current research on the improvement of competitive practices through the use of NLP and smart service systems.
Publisher: IGI Global
ISBN: 1799847314
Category : Computers
Languages : en
Pages : 554
Book Description
Natural language processing (NLP) is a branch of artificial intelligence that has emerged as a prevalent method of practice for a sizeable amount of companies. NLP enables software to understand human language and process complex data that is generated within businesses. In a competitive market, leading organizations are showing an increased interest in implementing this technology to improve user experience and establish smarter decision-making methods. Research on the application of intelligent analytics is crucial for professionals and companies who wish to gain an edge on the opposition. The Handbook of Research on Natural Language Processing and Smart Service Systems is a collection of innovative research on the integration and development of intelligent software tools and their various applications within professional environments. While highlighting topics including discourse analysis, information retrieval, and advanced dialog systems, this book is ideally designed for developers, practitioners, researchers, managers, engineers, academicians, business professionals, scholars, policymakers, and students seeking current research on the improvement of competitive practices through the use of NLP and smart service systems.
Natural Language Processing in Artificial Intelligence
Author: Brojo Kishore Mishra
Publisher: CRC Press
ISBN: 1000711315
Category : Science
Languages : en
Pages : 297
Book Description
This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.
Publisher: CRC Press
ISBN: 1000711315
Category : Science
Languages : en
Pages : 297
Book Description
This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.
Introduction to Natural Language Processing
Author: Jacob Eisenstein
Publisher: MIT Press
ISBN: 0262042843
Category : Computers
Languages : en
Pages : 535
Book Description
A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.
Publisher: MIT Press
ISBN: 0262042843
Category : Computers
Languages : en
Pages : 535
Book Description
A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.
Deep Learning and Linguistic Representation
Author: Shalom Lappin
Publisher: CRC Press
ISBN: 1000380327
Category : Computers
Languages : en
Pages : 162
Book Description
The application of deep learning methods to problems in natural language processing has generated significant progress across a wide range of natural language processing tasks. For some of these applications, deep learning models now approach or surpass human performance. While the success of this approach has transformed the engineering methods of machine learning in artificial intelligence, the significance of these achievements for the modelling of human learning and representation remains unclear. Deep Learning and Linguistic Representation looks at the application of a variety of deep learning systems to several cognitively interesting NLP tasks. It also considers the extent to which this work illuminates our understanding of the way in which humans acquire and represent linguistic knowledge. Key Features: combines an introduction to deep learning in AI and NLP with current research on Deep Neural Networks in computational linguistics. is self-contained and suitable for teaching in computer science, AI, and cognitive science courses; it does not assume extensive technical training in these areas. provides a compact guide to work on state of the art systems that are producing a revolution across a range of difficult natural language tasks.
Publisher: CRC Press
ISBN: 1000380327
Category : Computers
Languages : en
Pages : 162
Book Description
The application of deep learning methods to problems in natural language processing has generated significant progress across a wide range of natural language processing tasks. For some of these applications, deep learning models now approach or surpass human performance. While the success of this approach has transformed the engineering methods of machine learning in artificial intelligence, the significance of these achievements for the modelling of human learning and representation remains unclear. Deep Learning and Linguistic Representation looks at the application of a variety of deep learning systems to several cognitively interesting NLP tasks. It also considers the extent to which this work illuminates our understanding of the way in which humans acquire and represent linguistic knowledge. Key Features: combines an introduction to deep learning in AI and NLP with current research on Deep Neural Networks in computational linguistics. is self-contained and suitable for teaching in computer science, AI, and cognitive science courses; it does not assume extensive technical training in these areas. provides a compact guide to work on state of the art systems that are producing a revolution across a range of difficult natural language tasks.