Author: Mark Solovey
Publisher: MIT Press
ISBN: 0262358751
Category : Political Science
Languages : en
Pages : 409
Book Description
How the NSF became an important yet controversial patron for the social sciences, influencing debates over their scientific status and social relevance. In the early Cold War years, the U.S. government established the National Science Foundation (NSF), a civilian agency that soon became widely known for its dedication to supporting first-rate science. The agency's 1950 enabling legislation made no mention of the social sciences, although it included a vague reference to "other sciences." Nevertheless, as Mark Solovey shows in this book, the NSF also soon became a major--albeit controversial--source of public funding for them.
Social Science for What?
Author: Mark Solovey
Publisher: MIT Press
ISBN: 0262358751
Category : Political Science
Languages : en
Pages : 409
Book Description
How the NSF became an important yet controversial patron for the social sciences, influencing debates over their scientific status and social relevance. In the early Cold War years, the U.S. government established the National Science Foundation (NSF), a civilian agency that soon became widely known for its dedication to supporting first-rate science. The agency's 1950 enabling legislation made no mention of the social sciences, although it included a vague reference to "other sciences." Nevertheless, as Mark Solovey shows in this book, the NSF also soon became a major--albeit controversial--source of public funding for them.
Publisher: MIT Press
ISBN: 0262358751
Category : Political Science
Languages : en
Pages : 409
Book Description
How the NSF became an important yet controversial patron for the social sciences, influencing debates over their scientific status and social relevance. In the early Cold War years, the U.S. government established the National Science Foundation (NSF), a civilian agency that soon became widely known for its dedication to supporting first-rate science. The agency's 1950 enabling legislation made no mention of the social sciences, although it included a vague reference to "other sciences." Nevertheless, as Mark Solovey shows in this book, the NSF also soon became a major--albeit controversial--source of public funding for them.
National Science Foundation Authorization
Author: United States. Congress. Senate. Committee on Commerce, Science, and Transportation. Subcommittee on Science, Technology, and Space
Publisher:
ISBN:
Category :
Languages : en
Pages : 80
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 80
Book Description
A New Vision for Center-Based Engineering Research
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309459052
Category : Technology & Engineering
Languages : en
Pages : 103
Book Description
The future security, economic growth, and competitiveness of the United States depend on its capacity to innovate. Major sources of innovative capacity are the new knowledge and trained students generated by U.S. research universities. However, many of the complex technical and societal problems the United States faces cannot be addressed by the traditional model of individual university research groups headed by a single principal investigator. Instead, they can only be solved if researchers from multiple institutions and with diverse expertise combine their efforts. The National Science Foundation (NSF), among other federal agencies, began to explore the potential of such center-scale research programs in the 1970s and 1980s; in many ways, the NSF Engineering Research Center (ERC) program is its flagship program in this regard. The ERCs are "interdisciplinary, multi-institutional centers that join academia, industry, and government in partnership to produce transformational engineered systems and engineering graduates who are adept at innovation and primed for leadership in the global economy. To ensure that the ERCs continue to be a source of innovation, economic development, and educational excellence, A New Vision for Center-Based Engineering Research explores the future of center-based engineering research, the skills needed for effective center leadership, and opportunities to enhance engineering education through the centers.
Publisher: National Academies Press
ISBN: 0309459052
Category : Technology & Engineering
Languages : en
Pages : 103
Book Description
The future security, economic growth, and competitiveness of the United States depend on its capacity to innovate. Major sources of innovative capacity are the new knowledge and trained students generated by U.S. research universities. However, many of the complex technical and societal problems the United States faces cannot be addressed by the traditional model of individual university research groups headed by a single principal investigator. Instead, they can only be solved if researchers from multiple institutions and with diverse expertise combine their efforts. The National Science Foundation (NSF), among other federal agencies, began to explore the potential of such center-scale research programs in the 1970s and 1980s; in many ways, the NSF Engineering Research Center (ERC) program is its flagship program in this regard. The ERCs are "interdisciplinary, multi-institutional centers that join academia, industry, and government in partnership to produce transformational engineered systems and engineering graduates who are adept at innovation and primed for leadership in the global economy. To ensure that the ERCs continue to be a source of innovation, economic development, and educational excellence, A New Vision for Center-Based Engineering Research explores the future of center-based engineering research, the skills needed for effective center leadership, and opportunities to enhance engineering education through the centers.
Cost Principles for Educational Institutions
Author: United States. Office of Management and Budget
Publisher:
ISBN:
Category : Federal aid to higher education
Languages : en
Pages : 72
Book Description
Publisher:
ISBN:
Category : Federal aid to higher education
Languages : en
Pages : 72
Book Description
Science, Technology, Engineering, and Mathematics (Stem) Education
Author: Heather B. Gonzalez
Publisher: Createspace Independent Pub
ISBN: 9781479106103
Category : Education
Languages : en
Pages : 40
Book Description
The term “STEM education” refers to teaching and learning in the fields of science, technology, engineering, and mathematics. It typically includes educational activities across all grade levels—from pre-school to post-doctorate—in both formal (e.g., classrooms) and informal (e.g., afterschool programs) settings. Federal policymakers have an active and enduring interest in STEM education and the topic is frequently raised in federal science, education, workforce, national security, and immigration policy debates. For example, more than 200 bills containing the term “science education” were introduced between the 100th and 110th congresses. The United States is widely believed to perform poorly in STEM education. However, the data paint a complicated picture. By some measures, U.S. students appear to be doing quite well. For example, overall graduate enrollments in science and engineering (S&E) grew 35% over the last decade. Further, S&E enrollments for Hispanic/Latino, American Indian/Alaska Native, and African American students (all of whom are generally underrepresented in S&E) grew by 65%, 55%, and 50%, respectively. On the other hand, concerns remain about persistent academic achievement gaps between various demographic groups, STEM teacher quality, the rankings of U.S. students on international STEM assessments, foreign student enrollments and increased education attainment in other countries, and the ability of the U.S. STEM education system to meet domestic demand for STEM labor. Various attempts to assess the federal STEM education effort have produced different estimates of its scope and scale. Analysts have identified between 105 and 252 STEM education programs or activities at 13 to 15 federal agencies. Annual federal appropriations for STEM education are typically in the range of $2.8 billion to $3.4 billion. All published inventories identify the Department of Education, National Science Foundation, and Health and Human Services as key agencies in the federal effort. Over half of federal STEM education funding is intended to serve the needs of postsecondary schools and students; the remainder goes to efforts at the kindergarten-through-Grade 12 level. Much of the funding for post-secondary students is in the form of financial aid. Federal STEM education policy concerns center on issues that relate to STEM education as a whole—such as governance of the federal effort and broadening participation of underrepresented populations—as well as those that are specific to STEM education at the elementary, secondary, and postsecondary levels. Governance concerns focus on perceived duplication and lack of coordination in the federal effort; broadening participation concerns tend to highlight achievement gaps between various demographic groups. Analysts suggest a variety of policy proposals in elementary, secondary, and postsecondary STEM education. At the K-12 level, these include proposals to address teacher quality, accountability, and standards. At the post-secondary level, proposals center on efforts to remediate and retain students in STEM majors. This report is intended to serve as a primer for outlining existing STEM education policy issues and programs. It includes assessments of the federal STEM education effort and the condition of STEM education in the United States, as well as an analysis of several of the policy issues central to the contemporary federal conversation about STEM education. Appendix A contains frequently cited data and sources and Appendix B includes a selection of major STEM-related acts.
Publisher: Createspace Independent Pub
ISBN: 9781479106103
Category : Education
Languages : en
Pages : 40
Book Description
The term “STEM education” refers to teaching and learning in the fields of science, technology, engineering, and mathematics. It typically includes educational activities across all grade levels—from pre-school to post-doctorate—in both formal (e.g., classrooms) and informal (e.g., afterschool programs) settings. Federal policymakers have an active and enduring interest in STEM education and the topic is frequently raised in federal science, education, workforce, national security, and immigration policy debates. For example, more than 200 bills containing the term “science education” were introduced between the 100th and 110th congresses. The United States is widely believed to perform poorly in STEM education. However, the data paint a complicated picture. By some measures, U.S. students appear to be doing quite well. For example, overall graduate enrollments in science and engineering (S&E) grew 35% over the last decade. Further, S&E enrollments for Hispanic/Latino, American Indian/Alaska Native, and African American students (all of whom are generally underrepresented in S&E) grew by 65%, 55%, and 50%, respectively. On the other hand, concerns remain about persistent academic achievement gaps between various demographic groups, STEM teacher quality, the rankings of U.S. students on international STEM assessments, foreign student enrollments and increased education attainment in other countries, and the ability of the U.S. STEM education system to meet domestic demand for STEM labor. Various attempts to assess the federal STEM education effort have produced different estimates of its scope and scale. Analysts have identified between 105 and 252 STEM education programs or activities at 13 to 15 federal agencies. Annual federal appropriations for STEM education are typically in the range of $2.8 billion to $3.4 billion. All published inventories identify the Department of Education, National Science Foundation, and Health and Human Services as key agencies in the federal effort. Over half of federal STEM education funding is intended to serve the needs of postsecondary schools and students; the remainder goes to efforts at the kindergarten-through-Grade 12 level. Much of the funding for post-secondary students is in the form of financial aid. Federal STEM education policy concerns center on issues that relate to STEM education as a whole—such as governance of the federal effort and broadening participation of underrepresented populations—as well as those that are specific to STEM education at the elementary, secondary, and postsecondary levels. Governance concerns focus on perceived duplication and lack of coordination in the federal effort; broadening participation concerns tend to highlight achievement gaps between various demographic groups. Analysts suggest a variety of policy proposals in elementary, secondary, and postsecondary STEM education. At the K-12 level, these include proposals to address teacher quality, accountability, and standards. At the post-secondary level, proposals center on efforts to remediate and retain students in STEM majors. This report is intended to serve as a primer for outlining existing STEM education policy issues and programs. It includes assessments of the federal STEM education effort and the condition of STEM education in the United States, as well as an analysis of several of the policy issues central to the contemporary federal conversation about STEM education. Appendix A contains frequently cited data and sources and Appendix B includes a selection of major STEM-related acts.
National Defense Authorization Act for Fiscal Year 1997
Author: United States
Publisher:
ISBN:
Category : Four Confederated Bands of Pawnees
Languages : en
Pages : 450
Book Description
Publisher:
ISBN:
Category : Four Confederated Bands of Pawnees
Languages : en
Pages : 450
Book Description
Next Generation Earth Systems Science at the National Science Foundation
Author: National Academies of Sciences Engineering and Medicine
Publisher:
ISBN: 9780309224468
Category :
Languages : en
Pages :
Book Description
The National Science Foundation (NSF) has played a key role over the past several decades in advancing understanding of Earth's systems by funding research on atmospheric, ocean, hydrologic, geologic, polar, ecosystem, social, and engineering-related processes. Today, however, those systems are being driven like never before by human technologies and activities. Our understanding has struggled to keep pace with the rapidity and magnitude of human-driven changes, their impacts on human and ecosystem sustainability and resilience, and the effectiveness of different pathways to address those challenges. Given the urgency of understanding human-driven changes, NSF will need to sustain and expand its efforts to achieve greater impact. The time is ripe to create a next-generation Earth systems science initiative that emphasizes research on complex interconnections and feedbacks between natural and social processes. This will require NSF to place an increased emphasis on research inspired by real-world problems while maintaining their strong legacy of curiosity driven research across many disciplines ? as well as enhance the participation of social, engineering, and data scientists, and strengthen efforts to include diverse perspectives in research.
Publisher:
ISBN: 9780309224468
Category :
Languages : en
Pages :
Book Description
The National Science Foundation (NSF) has played a key role over the past several decades in advancing understanding of Earth's systems by funding research on atmospheric, ocean, hydrologic, geologic, polar, ecosystem, social, and engineering-related processes. Today, however, those systems are being driven like never before by human technologies and activities. Our understanding has struggled to keep pace with the rapidity and magnitude of human-driven changes, their impacts on human and ecosystem sustainability and resilience, and the effectiveness of different pathways to address those challenges. Given the urgency of understanding human-driven changes, NSF will need to sustain and expand its efforts to achieve greater impact. The time is ripe to create a next-generation Earth systems science initiative that emphasizes research on complex interconnections and feedbacks between natural and social processes. This will require NSF to place an increased emphasis on research inspired by real-world problems while maintaining their strong legacy of curiosity driven research across many disciplines ? as well as enhance the participation of social, engineering, and data scientists, and strengthen efforts to include diverse perspectives in research.
Knowledge Unbound
Author: Peter Suber
Publisher: MIT Press
ISBN: 0262329565
Category : Language Arts & Disciplines
Languages : en
Pages : 453
Book Description
Influential writings make the case for open access to research, explore its implications, and document the early struggles and successes of the open access movement. Peter Suber has been a leading advocate for open access since 2001 and has worked full time on issues of open access since 2003. As a professor of philosophy during the early days of the internet, he realized its power and potential as a medium for scholarship. As he writes now, “it was like an asteroid crash, fundamentally changing the environment, challenging dinosaurs to adapt, and challenging all of us to figure out whether we were dinosaurs.” When Suber began putting his writings and course materials online for anyone to use for any purpose, he soon experienced the benefits of that wider exposure. In 2001, he started a newsletter—the Free Online Scholarship Newsletter, which later became the SPARC Open Access Newsletter—in which he explored the implications of open access for research and scholarship. This book offers a selection of some of Suber's most significant and influential writings on open access from 2002 to 2010. In these texts, Suber makes the case for open access to research; answers common questions, objections, and misunderstandings; analyzes policy issues; and documents the growth and evolution of open access during its most critical early decade.
Publisher: MIT Press
ISBN: 0262329565
Category : Language Arts & Disciplines
Languages : en
Pages : 453
Book Description
Influential writings make the case for open access to research, explore its implications, and document the early struggles and successes of the open access movement. Peter Suber has been a leading advocate for open access since 2001 and has worked full time on issues of open access since 2003. As a professor of philosophy during the early days of the internet, he realized its power and potential as a medium for scholarship. As he writes now, “it was like an asteroid crash, fundamentally changing the environment, challenging dinosaurs to adapt, and challenging all of us to figure out whether we were dinosaurs.” When Suber began putting his writings and course materials online for anyone to use for any purpose, he soon experienced the benefits of that wider exposure. In 2001, he started a newsletter—the Free Online Scholarship Newsletter, which later became the SPARC Open Access Newsletter—in which he explored the implications of open access for research and scholarship. This book offers a selection of some of Suber's most significant and influential writings on open access from 2002 to 2010. In these texts, Suber makes the case for open access to research; answers common questions, objections, and misunderstandings; analyzes policy issues; and documents the growth and evolution of open access during its most critical early decade.
National Science Foundation Authorization
Author: United States. Congress. Senate. Labor and Public Welfare
Publisher:
ISBN:
Category :
Languages : en
Pages : 124
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 124
Book Description
Enhancing the Value and Sustainability of Field Stations and Marine Laboratories in the 21st Century
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309305373
Category : Science
Languages : en
Pages : 167
Book Description
For over a century, field stations have been important entryways for scientists to study and make important discoveries about the natural world. They are centers of research, conservation, education, and public outreach, often embedded in natural environments that range from remote to densely populated urban locations. Because they lack traditional university departmental boundaries, researchers at field stations have the opportunity to converge their science disciplines in ways that can change careers and entire fields of inquiry. Field stations provide physical space for immersive research, hands-on learning, and new collaborations that are otherwise hard to achieve in the everyday bustle of research and teaching lives on campus. But the separation from university campuses that allows creativity to flourish also creates challenges. Sometimes, field stations are viewed as remote outposts and are overlooked because they tend to be away from population centers and their home institutions. This view is exacerbated by the lack of empirical evidence that can be used to demonstrate their value to science and society. Enhancing the Value and Sustainability of Field Stations and Marine Laboratories in the 21st Century summarizes field stations' value to science, education, and outreach and evaluates their contributions to research, innovation, and education. This report suggests strategies to meet future research, education, outreach, infrastructure, funding, and logistical needs of field stations. Today's technologies - such as streaming data, remote sensing, robot-driven monitoring, automated DNA sequencing, and nanoparticle environmental sensors - provide means for field stations to retain their special connection to nature and still interact with the rest of the world in ways that can fuel breakthroughs in the environmental, physical, natural, and social sciences. The intellectual and natural capital of today's field stations present a solid platform, but many need enhancements of infrastructure and dynamic leadership if they are to meet the challenges of the complex problems facing the world. This report focuses on the capability of field stations to address societal needs today and in the future.
Publisher: National Academies Press
ISBN: 0309305373
Category : Science
Languages : en
Pages : 167
Book Description
For over a century, field stations have been important entryways for scientists to study and make important discoveries about the natural world. They are centers of research, conservation, education, and public outreach, often embedded in natural environments that range from remote to densely populated urban locations. Because they lack traditional university departmental boundaries, researchers at field stations have the opportunity to converge their science disciplines in ways that can change careers and entire fields of inquiry. Field stations provide physical space for immersive research, hands-on learning, and new collaborations that are otherwise hard to achieve in the everyday bustle of research and teaching lives on campus. But the separation from university campuses that allows creativity to flourish also creates challenges. Sometimes, field stations are viewed as remote outposts and are overlooked because they tend to be away from population centers and their home institutions. This view is exacerbated by the lack of empirical evidence that can be used to demonstrate their value to science and society. Enhancing the Value and Sustainability of Field Stations and Marine Laboratories in the 21st Century summarizes field stations' value to science, education, and outreach and evaluates their contributions to research, innovation, and education. This report suggests strategies to meet future research, education, outreach, infrastructure, funding, and logistical needs of field stations. Today's technologies - such as streaming data, remote sensing, robot-driven monitoring, automated DNA sequencing, and nanoparticle environmental sensors - provide means for field stations to retain their special connection to nature and still interact with the rest of the world in ways that can fuel breakthroughs in the environmental, physical, natural, and social sciences. The intellectual and natural capital of today's field stations present a solid platform, but many need enhancements of infrastructure and dynamic leadership if they are to meet the challenges of the complex problems facing the world. This report focuses on the capability of field stations to address societal needs today and in the future.