Nanoparticles Reinforced Metal Nanocomposites

Nanoparticles Reinforced Metal Nanocomposites PDF Author: Santosh K. Tiwari
Publisher: Springer Nature
ISBN: 9811997292
Category : Science
Languages : en
Pages : 406

Get Book Here

Book Description
This book highlights recent developments related to fabrication and utilization of nanoparticle-engineered metal matrices and their composites linked to the heavy industries, temperature fasteners, high-pressure vessels, and heavy turbines, etc. The mechanical properties of newly developed metallic composites are discussed in terms of tensile modulus, hardness, ductility, crack propagation, elongation, and chemical inertness. This book presents the design, development, and implementation of state-of-the-art methods linked to nanoparticle-reinforced metal nanocomposites for a wide variety of applications. Therefore, in a nutshell, this book provides a unique platform for researchers and professionals in the area of nanoparticle-reinforced metal nanocomposites.

Nanoparticles Reinforced Metal Nanocomposites

Nanoparticles Reinforced Metal Nanocomposites PDF Author: Santosh K. Tiwari
Publisher: Springer Nature
ISBN: 9811997292
Category : Science
Languages : en
Pages : 406

Get Book Here

Book Description
This book highlights recent developments related to fabrication and utilization of nanoparticle-engineered metal matrices and their composites linked to the heavy industries, temperature fasteners, high-pressure vessels, and heavy turbines, etc. The mechanical properties of newly developed metallic composites are discussed in terms of tensile modulus, hardness, ductility, crack propagation, elongation, and chemical inertness. This book presents the design, development, and implementation of state-of-the-art methods linked to nanoparticle-reinforced metal nanocomposites for a wide variety of applications. Therefore, in a nutshell, this book provides a unique platform for researchers and professionals in the area of nanoparticle-reinforced metal nanocomposites.

Metal Nanocomposites for Energy and Environmental Applications

Metal Nanocomposites for Energy and Environmental Applications PDF Author: Swatantra P. Singh
Publisher: Springer Nature
ISBN: 9811685991
Category : Technology & Engineering
Languages : en
Pages : 529

Get Book Here

Book Description
This book focuses on recent developments in metal nanomaterials and nanocomposites for energy and environmental application such as pollution control in water, air, and soil pollution. The chapters incorporate carbon-based, metal-based and metal-organic framework based nanomaterials and nanocomposites for emerging contaminants (pharmaceuticals and microplastics) and other traditional pollutants remediation along with energy storage, sensing of air and water polutents and carbon capture & storage (CCS). This book will be of interest to those in academia and industry involved in energy and environmental science & engineering research.

Nanoparticle-Reinforced Polymers

Nanoparticle-Reinforced Polymers PDF Author: Ana María Díez-Pascual
Publisher: MDPI
ISBN: 3039212834
Category : Science
Languages : en
Pages : 334

Get Book Here

Book Description
This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Aluminum Matrix Composites Reinforced with Alumina Nanoparticles

Aluminum Matrix Composites Reinforced with Alumina Nanoparticles PDF Author: Riccardo Casati
Publisher: Springer
ISBN: 3319277324
Category : Technology & Engineering
Languages : en
Pages : 134

Get Book Here

Book Description
This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and microstructure investigation techniques. The book presents and discusses the experimental results in detail, and offers suggestions for future research directions.

Ceramic nanocomposites

Ceramic nanocomposites PDF Author: F. He
Publisher: Elsevier Inc. Chapters
ISBN: 0128087862
Category : Technology & Engineering
Languages : en
Pages : 28

Get Book Here

Book Description
This chapter introduces research conducted on metal matrix nanocomposites (MMNCs). The chapter reviews the material system used for MMNCs and explains the principles to choose the reinforcement for metal matrix composites. The mechanical properties of MMNCs fabricated by different processes are summarized and models used to predict and describe the effect of different strengthening mechanisms on MMNCs are introduced. Different approaches used to produce MMNCs are reviewed and categorized.

Metal Nanocomposites in Nanotherapeutics for Oxidative Stress-Induced Metabolic Disorders

Metal Nanocomposites in Nanotherapeutics for Oxidative Stress-Induced Metabolic Disorders PDF Author: Anindita Behera
Publisher: CRC Press
ISBN: 1003808360
Category : Technology & Engineering
Languages : en
Pages : 522

Get Book Here

Book Description
This book highlights the role and mechanism of different metal nanocomposites toward oxidative stress-induced metabolic disorders including metabolic pathways affected by oxidative stress and related pathophysiology. The book includes an illustrative discussion about the methods of synthesis, characterization, and biomedical applications of metal nanocomposites. It focuses on the therapeutic approaches for metabolic disorders due to oxidative stress by nano delivery systems. Moreover, the book includes chapters on nanotherapeutic approaches toward different diseases, including diabetes mellitus, obesity, cardiovascular disorders, cancers, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This book is aimed at researchers and graduate students in nanocomposites, nano delivery systems, and bioengineering. Features Discusses nanocomposites in the field of therapy for diabetes, obesity, cardiovascular disorders, neurodegenerative diseases, and cancers Details the pathophysiology of oxidative stress-induced metabolic disorder Explains mechanisms of the antioxidant potential of metal nanocomposites Discusses pathways to elucidate the therapeutic activity Reviews specific and precise applications of metal nanocomposites against lifestyle-induced disorders

Metal-Polymer Nanocomposites

Metal-Polymer Nanocomposites PDF Author: Luigi Nicolais
Publisher: John Wiley & Sons
ISBN: 0471695424
Category : Science
Languages : en
Pages : 320

Get Book Here

Book Description
A unique guide to an essential area of nanoscience Interest in nano-sized metals has increased greatly due to theirspecial characteristics and suitability for a number of advancedapplications. As technology becomes more refined-including theability to effectively manipulate and stabilize metals at thenanoscale-these materials present ever-more workable solutions to agrowing range of problems. Metal-Polymer Nanocomposites provides the first guidesolely devoted to the unique properties and applications of thisessential area of nanoscience. It offers a truly multidisciplinaryapproach, making the text accessible to readers in physical,chemical, and materials science as well as areas such asengineering and topology. The thorough coverage includes: The chemical and physical properties of nano-sized metals Different approaches to the synthesis of metal-polymernanocomposites (MPN) Advanced characterization techniques and methods for study ofMPN Real-world applications, including color filters, polarizers,optical sensors, nonlinear optical devices, and more An extensive list of references on the topics covered A unique, cutting-edge resource for a vital area of nanosciencedevelopment, Metal-Polymer Nanocomposites is an invaluabletext for students and practitioners of materials science,engineering, polymer science, chemical engineering, electricalengineering, and optics.

Scalable Nano-Manufacturing of Metal-Based Nanocomposites

Scalable Nano-Manufacturing of Metal-Based Nanocomposites PDF Author: Abdolreza Javadi
Publisher:
ISBN:
Category :
Languages : en
Pages : 130

Get Book Here

Book Description
The objective of this study is to significantly advance the fundamental knowledge to enable scalable nano-manufacturing of metal-based nanocomposites by overcoming the grand challenges that exist in both fundamental and manufacturing levels. It especially seeks to manufacture bulk aluminum nanocomposite electrical conductors (ANECs) with uniform dispersion and distribution of nanoparticles that offer excellent mechanical and electrical properties. Polymer-metal nanocomposite is an emerging class of hybrid materials which can offer significantly improved functional properties (e.g. electrical conductivity). Incorporating proper nanoscale metallic elements into polymer matrices can enhance the electrical conductivity of the polymers. To achieve such polymer nanocomposites, the longstanding challenge of uniform dispersion of metal nanoparticles in polymers must be addressed. Conventional scale-down techniques often are only able to shrink larger elements (e.g. microparticles and microfibers) into micro/nano-elements (i.e. nanoparticles and nanofibers) without significant modification in their relative spatial and size distributions. This study uncovers an unusual phenomenon that tin (Sn) microparticles with both poor size distribution and spatial dispersion were stretched into uniformly dispersed and sized nanoparticles in polyethersulfone (PES) using thermal drawing method. It is believed that the capillary instability plays a crucial role during thermal drawing. This novel, inexpensive, and scalable method overcomes the longstanding challenge to produce bulk polymer-metal nanocomposites (PMNCs) with a uniform dispersion of metallic nano-elements (Chapter 3). Nano-elements (e.g. nanoparticles) are one of the most important constituent of the nanocomposite materials. Since titanium diboride (TiB2) nanoparticles is of a crucial factor in this study, and more importantly is not commercially available, we synthesized these reinforcements to ensure high purity and size uniformity. Our preliminary results show that TiB2 nanoparticles with a uniform size can be produced. Further characterization confirmed the presence of crystalline TiB2 nanoparticles with average size of 8.1i 0.4 nm. The in-house synthesized TiB2 nanoparticles were used to reinforce both aluminum and magnesium matrices. Successful incorporation of TiB2 nanoparticles in the aforementioned matrices was another indirection indication of high purity and surface-clean TiB2 nanoparticles (Chapter 4). Lightweight metallic systems (e.g. Al) have promising potentials for applications in metal-based laser additive manufacturing. Lightweight metals exhibit moderate mechanical properties compare to high density metals (e.g. steel). However, lightweight metal matrix nanocomposites (LMMNCs) offer excellent mechanical properties desirable to improve energy efficiency and system performance for widespread applications including, but not limited to, aerospace, transportation, electronics, automotive, and defense. It has been a longstanding challenge to realize a scalable manufacturing method to produce metal nanocomposite microparticles. This study demonstrates high volume manufacturing of Al and magnesiuim (Mg) nanocomposite microparticles. In-house synthesized TiB2 and commercial titanium carbide (TiC) nanoparticles were chosen as nano-scale reinforcements. Using a flux-assisted solidification processing method, up to 30% volume fraction nanoparticles were efficiently incorporated and dispersed into Al and Mg microparticles. Theoretical study on nanoparticle interactions in molten metals revealed that TiC and TiB2 nanoparticles can be self-dispersed and self-stabilized in molten Al and Mg matrices. Metal-based additive manufacturing and thermal spraying coating can significantly benefit from these novel Al and Mg nanocomposite microparticles. This simple yet scalable approach can broaden the applications of such nanocomposite in additive manufacturing of the functional parts. Moreover, the metal nanocomposite microparticles can be applied in conventional manufacturing processing. For example, bulk Al-30 volume percent (vol. %) nanocomposites were produced by cold compaction of Al-30 vol. % TiB2 nanocomposite microparticles followed by melting. Al-30 vol. % TiB2 nanocomposites with average Vickers hardness of 458 HV was successfully produced (Chapter 5). Magnesium is the lightest structure metal applied in broad range of applications in various industries such as biomedical, transportation, construction, naval and electronic. Strengthening Mg is of significance for energy efficiency of numerous transportation systems. Traditional metal strengthening approaches such as elemental alloying have reached their fundamental limits in offering high strength metals functioning at elevated temperature. Adding nanoparticle reinforcements can effectively promote the mechanical properties of Mg nanocomposites. However, manufacturing of bulk magnesium nanocomposites with populous and dispersed nanoparticles remains as a great challenge. Here we report a novel flux-assisted liquid state processing of bulk Mg nanocomposites with TiC as the nanoscale reinforcements. TiC nanoparticles with high hardness and high elastic modulus is well-distributed and uniformly dispersed in the Mg matrix, resulting in a significantly improved Vickers hardness of 143.5i 11.5 HV (pure Mg Vickers hardness is about 35 HV). Further theoretical study suggested that TiC nanoparticles can be self-dispersed and self-stabilized in Mg matrix (Chapter 6). Aluminum is one of the most abundant lightweight metal on Earth with a wide range of practical applications such as electrical wire. However, traditional aluminum manufacturing processing approaches such as elemental alloying, deformation and thermomechanical cannot offer further property improvement due to fundamental limitations. Successful incorporation of ceramic nanoparticles into aluminum have shown unusual property improvements. Adding metal-like ceramic nanoparticles into aluminum matrix can be a promising alternative to produce high performance aluminum electrical wires. Here we show a new class of aluminum nanocomposite electrical conductors (ANECs), with significantly improved average Vickers hardness (130 HV) and good electrical conductivity (41% IACS). The as-cast Al-3 vol. % TiB2 nanocomposites exhibit yield strength of 206.6 MPa, UTS of 219.6 MPa, tensile strain of 4.3% and electrical conductivity of 57.5% IACS (pure Al has yield strength of 35 MPa, UTS of 90 MPa, tensile strain of 12% and electrical conductivity of 62.5% IACS). We also observed an unusual ultra-fine grain (UFG) size, as small as 300 nm, in the ANEC samples under slow cooling. We believe that the significant mechanical property enhancements can be partially attributed to the existence of the UFG. Further investigations demonstrated that UFG can be achieved when nanoparticles are uniformly dispersed and distributed in the aluminum matrix (Chapter 7). In summary, analytical, numerical and experimental approaches have been established to significantly advance fundamental understanding of polymeric and metallic matrix nanocomposites, in particular the effect of metal-like ceramics on mechanical and electrical properties of lightweight metals. This study has demonstrated scalable production of multi-functional metal and polymer matrix nanocomposites. Metal-like ceramic nanoparticles can significantly enhance the mechanical properties of metal matrix while retaining good electrical properties.

Nanocomposites

Nanocomposites PDF Author: Luigi Nicolais
Publisher: John Wiley & Sons
ISBN: 1118742702
Category : Science
Languages : en
Pages : 261

Get Book Here

Book Description
A Step-by-step guide to the synthesis and characterization of metal-polymer nanocomposites Polymer nanocomposites, polymers that are reinforced with nano-sized particles, provide enhanced mechanical, thermal, electrical, and barrier properties. Continued research and development of new polymer nanocomposites promises to provide enhanced materials to a broad range of industries, such as plastics, aerospace, automotive, electronics, packaging, and biomedical devices. Structured as a practical laboratory manual, this book enables readers to expertly synthesize and characterize metal-polymer nanocomposites by clearly setting forth the principles and techniques. Nanocomposites: In Situ Synthesis of Polymer-Embedded Nanostructures features contributions from an international team of materials science and nanotechnology experts. Chapters reflect the authors' critical review of the literature as well as their own laboratory experience working with polymer nanocomposites. The book begins with a detailed introduction to the science, properties, and applications of metal-polymer nanocomposites. Next, it covers such topics as: Morphological and topological concepts Phase separation and nanoparticle aggregation Methods for the synthesis of nanocomposites Morphological control Characterization techniques and data analysis methods Toxicity considerations High-resolution images of metal nanoparticles, created by transmission electron microscopy, are provided throughout the book. There are also plenty of process schemes and detailed drawings, helping readers better understand how to synthesize, characterize, and use these composite materials. A bibliography at the end of each chapter provides a gateway to original research papers and reviews in the field. With its focus on the practical steps of synthesis and characterization, Nanocomposites: In Situ Synthesis of Polymer-Embedded Nanostructures is recommended for both students and practitioners in nanotechnology, polymer science, and materials science and engineering.

Metallopolymer Nanocomposites

Metallopolymer Nanocomposites PDF Author: A.D. Pomogailo
Publisher: Springer Science & Business Media
ISBN: 3540265236
Category : Technology & Engineering
Languages : en
Pages : 577

Get Book Here

Book Description
This book presents and analyzes the essential data on nanoscale metal clusters dispersed in, or chemically bonded with polymers. Special attention is paid to the in situ synthesis of the nanocomposites, their chemical interactions, and the size and distribution of the particles in the polymer matrix. Numerous novel nanocomposites are described with regard to their mechanical, electrophysical, optical, magnetic, catalytic and biological properties. Their applications, present and future, are outlined.