Author: Joseph Landin
Publisher: Courier Corporation
ISBN: 0486150410
Category : Mathematics
Languages : en
Pages : 275
Book Description
This self-contained text covers sets and numbers, elements of set theory, real numbers, the theory of groups, group isomorphism and homomorphism, theory of rings, and polynomial rings. 1969 edition.
An Introduction to Algebraic Structures
Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1931233152
Category : Mathematics
Languages : en
Pages : 220
Book Description
This book for the first time introduces neutrosophic groups, neutrosophic semigroups, neutrosophic loops and neutrosophic groupoids and their neutrosophic N-structures.The special feature of this book is that it tries to analyze when the general neutrosophic algebraic structures like loops, semigroups and groupoids satisfy some of the classical theorems for finite groups viz. Lagrange, Sylow, and Cauchy.This is mainly carried out to know more about these neutrosophic algebraic structures and their neutrosophic N-algebraic structures.
Publisher: Infinite Study
ISBN: 1931233152
Category : Mathematics
Languages : en
Pages : 220
Book Description
This book for the first time introduces neutrosophic groups, neutrosophic semigroups, neutrosophic loops and neutrosophic groupoids and their neutrosophic N-structures.The special feature of this book is that it tries to analyze when the general neutrosophic algebraic structures like loops, semigroups and groupoids satisfy some of the classical theorems for finite groups viz. Lagrange, Sylow, and Cauchy.This is mainly carried out to know more about these neutrosophic algebraic structures and their neutrosophic N-algebraic structures.
Algebraic Structures
Author: George R. Kempf
Publisher: Springer Science & Business Media
ISBN: 3322802787
Category : Mathematics
Languages : en
Pages : 174
Book Description
In algebra there are four basic structures: groups, rings, fields and modules. In this book the theory of these basic structures is presented and the laws of composition - the basic operations of algebra - are studied. Essentially, no previous knowledge is required, it is only assumed as background that the reader has learned some linear algebra over the real numbers.Dieses Lehrbuch, verfasst von einem anerkannten amerikanischen Mathematiker, ist eine unkonventionelle Einführung in die Algebra. Es gibt vier grundlegende Strukturen in der Algebra: Gruppen, Ringe, Körper und Moduln. Das Buch behandelt die Theorie dieser Strukturen und beschreibt die Verknüpfungsregeln, die grundlegenden Operationen der Algebra. Die Darstellung ist elementar: es werden nur Kenntnisse der Linearen Algebra vorausgesetzt, weitere Fachkenntnisse sind nicht erforderlich.
Publisher: Springer Science & Business Media
ISBN: 3322802787
Category : Mathematics
Languages : en
Pages : 174
Book Description
In algebra there are four basic structures: groups, rings, fields and modules. In this book the theory of these basic structures is presented and the laws of composition - the basic operations of algebra - are studied. Essentially, no previous knowledge is required, it is only assumed as background that the reader has learned some linear algebra over the real numbers.Dieses Lehrbuch, verfasst von einem anerkannten amerikanischen Mathematiker, ist eine unkonventionelle Einführung in die Algebra. Es gibt vier grundlegende Strukturen in der Algebra: Gruppen, Ringe, Körper und Moduln. Das Buch behandelt die Theorie dieser Strukturen und beschreibt die Verknüpfungsregeln, die grundlegenden Operationen der Algebra. Die Darstellung ist elementar: es werden nur Kenntnisse der Linearen Algebra vorausgesetzt, weitere Fachkenntnisse sind nicht erforderlich.
N-Algebraic Structures
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1931233055
Category : Mathematics
Languages : en
Pages : 209
Book Description
In this book, for the first time we introduce the notions of N-groups, N-semigroups, N-loops and N-groupoids. We also define a mixed N-algebraic structure. The book is organized into six chapters. The first chapter gives the basic notions of S-semigroups, S-groupoids and S-loops thereby making the book self-contained. Chapter two introduces N-groups and their Smarandache analogues. In chapter three, N-loops and Smarandache N-loops are introduced and analyzed. Chapter four defines N-groupoids and S-N-groupoids. Since the N-semigroup structures are sandwiched between groups and groupoids, the study can be carried out without any difficulty. Mixed N-algebraic structures and S-mixed algebraic structures are given in chapter five. Some problems are suggested in chapter six. It is pertinent to mention that several exercises and problems (Some in the form of proof to the theorems are given in all the chapters.) A reader who attempts to solve them will certainly gain a sound knowledge about these concepts. We have given 50 problems for the reader to solve in chapter 6. The main aim of this book is to introduce new concepts and explain them with examples there by encouraging young mathematics to pursue research in this direction. Several theorems based on the definition can be easily proved with simple modification. Innovative readers can take up that job. Also these notions find their applications in automaton theory and coloring problems. The N-semigroups and N-automaton can be applied to construct finite machines, which can perform multitasks, so their capability would be much higher than the usual automaton of finite machines constructed. We have suggested a list of references for further reading.
Publisher: Infinite Study
ISBN: 1931233055
Category : Mathematics
Languages : en
Pages : 209
Book Description
In this book, for the first time we introduce the notions of N-groups, N-semigroups, N-loops and N-groupoids. We also define a mixed N-algebraic structure. The book is organized into six chapters. The first chapter gives the basic notions of S-semigroups, S-groupoids and S-loops thereby making the book self-contained. Chapter two introduces N-groups and their Smarandache analogues. In chapter three, N-loops and Smarandache N-loops are introduced and analyzed. Chapter four defines N-groupoids and S-N-groupoids. Since the N-semigroup structures are sandwiched between groups and groupoids, the study can be carried out without any difficulty. Mixed N-algebraic structures and S-mixed algebraic structures are given in chapter five. Some problems are suggested in chapter six. It is pertinent to mention that several exercises and problems (Some in the form of proof to the theorems are given in all the chapters.) A reader who attempts to solve them will certainly gain a sound knowledge about these concepts. We have given 50 problems for the reader to solve in chapter 6. The main aim of this book is to introduce new concepts and explain them with examples there by encouraging young mathematics to pursue research in this direction. Several theorems based on the definition can be easily proved with simple modification. Innovative readers can take up that job. Also these notions find their applications in automaton theory and coloring problems. The N-semigroups and N-automaton can be applied to construct finite machines, which can perform multitasks, so their capability would be much higher than the usual automaton of finite machines constructed. We have suggested a list of references for further reading.
Undergraduate Algebra
Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1475768982
Category : Mathematics
Languages : en
Pages : 380
Book Description
The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group
Publisher: Springer Science & Business Media
ISBN: 1475768982
Category : Mathematics
Languages : en
Pages : 380
Book Description
The companion title, Linear Algebra, has sold over 8,000 copies The writing style is very accessible The material can be covered easily in a one-year or one-term course Includes Noah Snyder's proof of the Mason-Stothers polynomial abc theorem New material included on product structure for matrices including descriptions of the conjugation representation of the diagonal group
Algebraic Structures and Applications
Author: Sergei Silvestrov
Publisher: Springer Nature
ISBN: 3030418502
Category : Mathematics
Languages : en
Pages : 976
Book Description
This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas.
Publisher: Springer Nature
ISBN: 3030418502
Category : Mathematics
Languages : en
Pages : 976
Book Description
This book explores the latest advances in algebraic structures and applications, and focuses on mathematical concepts, methods, structures, problems, algorithms and computational methods important in the natural sciences, engineering and modern technologies. In particular, it features mathematical methods and models of non-commutative and non-associative algebras, hom-algebra structures, generalizations of differential calculus, quantum deformations of algebras, Lie algebras and their generalizations, semi-groups and groups, constructive algebra, matrix analysis and its interplay with topology, knot theory, dynamical systems, functional analysis, stochastic processes, perturbation analysis of Markov chains, and applications in network analysis, financial mathematics and engineering mathematics. The book addresses both theory and applications, which are illustrated with a wealth of ideas, proofs and examples to help readers understand the material and develop new mathematical methods and concepts of their own. The high-quality chapters share a wealth of new methods and results, review cutting-edge research and discuss open problems and directions for future research. Taken together, they offer a source of inspiration for a broad range of researchers and research students whose work involves algebraic structures and their applications, probability theory and mathematical statistics, applied mathematics, engineering mathematics and related areas.
A Physicists Introduction to Algebraic Structures
Author: Palash B. Pal
Publisher: Cambridge University Press
ISBN: 1108492207
Category : Mathematics
Languages : en
Pages : 717
Book Description
Algebraic structures including vector space, groups, topological spaces and more, all covered in one volume, showing the mutual connections.
Publisher: Cambridge University Press
ISBN: 1108492207
Category : Mathematics
Languages : en
Pages : 717
Book Description
Algebraic structures including vector space, groups, topological spaces and more, all covered in one volume, showing the mutual connections.
Algebraic Structures and Their Representations
Author: José Antonio de la Peña
Publisher: American Mathematical Soc.
ISBN: 0821836307
Category : Mathematics
Languages : en
Pages : 466
Book Description
The Latin-American conference on algebra, the XV Coloquio Latinoamericano de Algebra (Cocoyoc, Mexico), consisted of plenary sessions of general interest and special sessions on algebraic combinatorics, associative rings, cohomology of rings and algebras, commutative algebra, group representations, Hopf algebras, number theory, quantum groups, and representation theory of algebras. This proceedings volume contains original research papers related to talks at the colloquium. In addition, there are several surveys presenting important topics to a broad mathematical audience. There are also two invited papers by Raymundo Bautista and Roberto Martinez, founders of the Mexican school of representation theory of algebras. The book is suitable for graduate students and researchers interested in algebra.
Publisher: American Mathematical Soc.
ISBN: 0821836307
Category : Mathematics
Languages : en
Pages : 466
Book Description
The Latin-American conference on algebra, the XV Coloquio Latinoamericano de Algebra (Cocoyoc, Mexico), consisted of plenary sessions of general interest and special sessions on algebraic combinatorics, associative rings, cohomology of rings and algebras, commutative algebra, group representations, Hopf algebras, number theory, quantum groups, and representation theory of algebras. This proceedings volume contains original research papers related to talks at the colloquium. In addition, there are several surveys presenting important topics to a broad mathematical audience. There are also two invited papers by Raymundo Bautista and Roberto Martinez, founders of the Mexican school of representation theory of algebras. The book is suitable for graduate students and researchers interested in algebra.
Introduction to NeutroAlgebraic Structures and AntiAlgebraic Structures (revisited)
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 16
Book Description
In all classical algebraic structures, the Laws of Compositions on a given set are well-defined. But this is a restrictive case, because there are many more situations in science and in any domain of knowledge when a law of composition defined on a set may be only partially-defined (or partially true) and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined (totally false) that we call AntiDefined.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 16
Book Description
In all classical algebraic structures, the Laws of Compositions on a given set are well-defined. But this is a restrictive case, because there are many more situations in science and in any domain of knowledge when a law of composition defined on a set may be only partially-defined (or partially true) and partially-undefined (or partially false), that we call NeutroDefined, or totally undefined (totally false) that we call AntiDefined.
Algebraic Structure of String Field Theory
Author: Martin Doubek
Publisher: Springer Nature
ISBN: 3030530566
Category : Science
Languages : en
Pages : 223
Book Description
This book gives a modern presentation of modular operands and their role in string field theory. The authors aim to outline the arguments from the perspective of homotopy algebras and their operadic origin. Part I reviews string field theory from the point of view of homotopy algebras, including A-infinity algebras, loop homotopy (quantum L-infinity) and IBL-infinity algebras governing its structure. Within this framework, the covariant construction of a string field theory naturally emerges as composition of two morphisms of particular odd modular operads. This part is intended primarily for researchers and graduate students who are interested in applications of higher algebraic structures to strings and quantum field theory. Part II contains a comprehensive treatment of the mathematical background on operads and homotopy algebras in a broader context, which should appeal also to mathematicians who are not familiar with string theory.
Publisher: Springer Nature
ISBN: 3030530566
Category : Science
Languages : en
Pages : 223
Book Description
This book gives a modern presentation of modular operands and their role in string field theory. The authors aim to outline the arguments from the perspective of homotopy algebras and their operadic origin. Part I reviews string field theory from the point of view of homotopy algebras, including A-infinity algebras, loop homotopy (quantum L-infinity) and IBL-infinity algebras governing its structure. Within this framework, the covariant construction of a string field theory naturally emerges as composition of two morphisms of particular odd modular operads. This part is intended primarily for researchers and graduate students who are interested in applications of higher algebraic structures to strings and quantum field theory. Part II contains a comprehensive treatment of the mathematical background on operads and homotopy algebras in a broader context, which should appeal also to mathematicians who are not familiar with string theory.