Multivariate Methods in Epidemiology

Multivariate Methods in Epidemiology PDF Author: Theodore R. Holford
Publisher: Oxford University Press
ISBN: 0199747768
Category : Medical
Languages : en
Pages : 427

Get Book Here

Book Description
The basis for much of medical public health practice comes from epidemiological research. This text describes current statistical tools that are used to analyze the association between possible risk factors and the actual risk of disease. Beginning with a broad conceptual framework on the disease process, it describes commonly used techniques for analyzing proportions and disease rates. These are then extended to model fitting, and the common threads of logic that bind the two analytic strategies together are revealed. Each chapter provides a descriptive rationale for the method, a worked example using data from a published study, and an exercise that allows the reader to practice the technique. Each chapter also includes an appendix that provides further details on the theoretical underpinnings of the method. Among the topics covered are Mantel-Haenszel methods, rates, survival analysis, logistic regression, and generalized linear models. Methods for incorporating aspects of study design, such as matching, into the analysis are discussed, and guidance is given for determining the power or the sample size requirements of a study. This text will give readers a foundation in applied statistics and the concepts of model fitting to develop skills in the analysis of epidemiological data.

Multivariate Methods in Epidemiology

Multivariate Methods in Epidemiology PDF Author: Theodore R. Holford
Publisher: Oxford University Press
ISBN: 0199747768
Category : Medical
Languages : en
Pages : 427

Get Book Here

Book Description
The basis for much of medical public health practice comes from epidemiological research. This text describes current statistical tools that are used to analyze the association between possible risk factors and the actual risk of disease. Beginning with a broad conceptual framework on the disease process, it describes commonly used techniques for analyzing proportions and disease rates. These are then extended to model fitting, and the common threads of logic that bind the two analytic strategies together are revealed. Each chapter provides a descriptive rationale for the method, a worked example using data from a published study, and an exercise that allows the reader to practice the technique. Each chapter also includes an appendix that provides further details on the theoretical underpinnings of the method. Among the topics covered are Mantel-Haenszel methods, rates, survival analysis, logistic regression, and generalized linear models. Methods for incorporating aspects of study design, such as matching, into the analysis are discussed, and guidance is given for determining the power or the sample size requirements of a study. This text will give readers a foundation in applied statistics and the concepts of model fitting to develop skills in the analysis of epidemiological data.

Multivariate Methods in Epidemiology

Multivariate Methods in Epidemiology PDF Author: Theodore R. Holford
Publisher: Oxford University Press
ISBN: 0195124405
Category : Language Arts & Disciplines
Languages : en
Pages : 427

Get Book Here

Book Description
This text describes the statistical tools that are currently used to analyse epidemiologic data on the association between possible risk factors and the actual risk of disease.

Practical Multivariate Analysis

Practical Multivariate Analysis PDF Author: Abdelmonem Afifi
Publisher: CRC Press
ISBN: 1351788906
Category : Mathematics
Languages : en
Pages : 534

Get Book Here

Book Description
This is the sixth edition of a popular textbook on multivariate analysis. Well-regarded for its practical and accessible approach, with excellent examples and good guidance on computing, the book is particularly popular for teaching outside statistics, i.e. in epidemiology, social science, business, etc. The sixth edition has been updated with a new chapter on data visualization, a distinction made between exploratory and confirmatory analyses and a new section on generalized estimating equations and many new updates throughout. This new edition will enable the book to continue as one of the leading textbooks in the area, particularly for non-statisticians. Key Features: Provides a comprehensive, practical and accessible introduction to multivariate analysis. Keeps mathematical details to a minimum, so particularly geared toward a non-statistical audience. Includes lots of detailed worked examples, guidance on computing, and exercises. Updated with a new chapter on data visualization.

Multivariable Analysis

Multivariable Analysis PDF Author: Mitchell H. Katz
Publisher: Cambridge University Press
ISBN: 9780521549851
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
How to perform and interpret multivariable analysis, using plain language rather than complex derivations.

Epidemiology

Epidemiology PDF Author: Moyses Szklo
Publisher: Jones & Bartlett Publishers
ISBN: 1449604692
Category : Education
Languages : en
Pages : 530

Get Book Here

Book Description
This book is specifically designed to expand reader knowledge while avoiding complex statistical formulations. Emphasizing the quantitative issues of epidemiology, this book focuses on study design, measures of association, interaction, research assessment, and other methods and practice. The Second Edition takes readers who have a good understanding of basic epidemiological principles through more rigorous discussions of concepts and methods.

Applied Multivariate Statistics with R

Applied Multivariate Statistics with R PDF Author: Daniel Zelterman
Publisher: Springer Nature
ISBN: 3031130057
Category : Medical
Languages : en
Pages : 469

Get Book Here

Book Description
Now in its second edition, this book brings multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source shareware program R, Dr. Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays; linear algebra; univariate, bivariate and multivariate normal distributions; factor methods; linear regression; discrimination and classification; clustering; time series models; and additional methods. He uses practical examples from diverse disciplines, to welcome readers from a variety of academic specialties. Each chapter includes exercises, real data sets, and R implementations. The book avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary. New to this edition are chapters devoted to longitudinal studies and the clustering of large data. It is an excellent resource for students of multivariate statistics, as well as practitioners in the health and life sciences who are looking to integrate statistics into their work.

Statistics in Epidemiology

Statistics in Epidemiology PDF Author: Hardeo Sahai
Publisher: CRC Press
ISBN: 9780849394447
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
Epidemiologic studies provide research strategies for investigating public health and scientific questions relating to the factors that cause and prevent ailments in human populations. Statistics in Epidemiology: Methods, Techniques and Applications presents a comprehensive review of the wide range of principles, methods and techniques underlying prospective, retrospective and cross-sectional approaches to epidemiologic studies. Written for epidemiologists and other researchers without extensive backgrounds in statistics, this new book provides a clear and concise description of the statistical tools used in epidemiology. Emphasis is given to the application of these statistical tools, and examples are provided to illustrate direct methods for applying common statistical techniques in order to obtain solutions to problems. Statistics in Epidemiology: Methods, Techniques and Applications goes beyond the elementary material found in basic epidemiology and biostatistics books and provides a detailed account of techniques:

Modern Methods for Epidemiology

Modern Methods for Epidemiology PDF Author: Yu-Kang Tu
Publisher: Springer Science & Business Media
ISBN: 9400730241
Category : Medical
Languages : en
Pages : 315

Get Book Here

Book Description
Routine applications of advanced statistical methods on real data have become possible in the last ten years because desktop computers have become much more powerful and cheaper. However, proper understanding of the challenging statistical theory behind those methods remains essential for correct application and interpretation, and rarely seen in the medical literature. Modern Methods for Epidemiology provides a concise introduction to recent development in statistical methodologies for epidemiological and biomedical researchers. Many of these methods have become indispensible tools for researchers working in epidemiology and medicine but are rarely discussed in details by standard textbooks of biostatistics or epidemiology. Contributors of this book are experienced researchers and experts in their respective fields. This textbook provides a solid starting point for those who are new to epidemiology, and for those looking for guidance in more modern statistical approaches to observational epidemiology. Epidemiological and biomedical researchers who wish to overcome the mathematical barrier of applying those methods to their research will find this book an accessible and helpful reference for self-learning and research. This book is also a good source for teaching postgraduate students in medical statistics or epidemiology.

An Introduction to Applied Multivariate Analysis with R

An Introduction to Applied Multivariate Analysis with R PDF Author: Brian Everitt
Publisher: Springer Science & Business Media
ISBN: 1441996508
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.

Statistical Methods in Genetic Epidemiology

Statistical Methods in Genetic Epidemiology PDF Author: Duncan C. Thomas
Publisher: Oxford University Press
ISBN: 0199748055
Category : Medical
Languages : en
Pages : 458

Get Book Here

Book Description
This well-organized and clearly written text has a unique focus on methods of identifying the joint effects of genes and environment on disease patterns. It follows the natural sequence of research, taking readers through the study designs and statistical analysis techniques for determining whether a trait runs in families, testing hypotheses about whether a familial tendency is due to genetic or environmental factors or both, estimating the parameters of a genetic model, localizing and ultimately isolating the responsible genes, and finally characterizing their effects in the population. Examples from the literature on the genetic epidemiology of breast and colorectal cancer, among other diseases, illustrate this process. Although the book is oriented primarily towards graduate students in epidemiology, biostatistics and human genetics, it will also serve as a comprehensive reference work for researchers. Introductory chapters on molecular biology, Mendelian genetics, epidemiology, statistics, and population genetics will help make the book accessible to those coming from one of these fields without a background in the others. It strikes a good balance between epidemiologic study designs and statistical methods of data analysis.