Author: V. Temlyakov
Publisher: Cambridge University Press
ISBN: 1108428754
Category : Computers
Languages : en
Pages : 551
Book Description
Self-contained presentation of multivariate approximation from classical linear approximation to contemporary nonlinear approximation.
Multivariate Approximation
Author: V. Temlyakov
Publisher: Cambridge University Press
ISBN: 1108428754
Category : Computers
Languages : en
Pages : 551
Book Description
Self-contained presentation of multivariate approximation from classical linear approximation to contemporary nonlinear approximation.
Publisher: Cambridge University Press
ISBN: 1108428754
Category : Computers
Languages : en
Pages : 551
Book Description
Self-contained presentation of multivariate approximation from classical linear approximation to contemporary nonlinear approximation.
Multivariate Polynomial Approximation
Author: Manfred Reimer
Publisher: Birkhäuser
ISBN: 3034880952
Category : Mathematics
Languages : en
Pages : 361
Book Description
This book introduces general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators. On this background, the book builds the first comprehensive introduction to the theory of generalized hyperinterpolation. Several parts of the book are based on rotation principles, which are presented in the beginning of the book.
Publisher: Birkhäuser
ISBN: 3034880952
Category : Mathematics
Languages : en
Pages : 361
Book Description
This book introduces general theory by presenting the most important facts on multivariate interpolation, quadrature, orthogonal projections and their summation, all treated under a constructive view, and embedded in the theory of positive linear operators. On this background, the book builds the first comprehensive introduction to the theory of generalized hyperinterpolation. Several parts of the book are based on rotation principles, which are presented in the beginning of the book.
Multivariate Approximation Theory
Author: E. W. Cheney
Publisher: SIAM
ISBN: 0898712076
Category : Mathematics
Languages : en
Pages : 74
Book Description
This monograph deals with the development of algorithms or the derivation of approximations from linear projections.
Publisher: SIAM
ISBN: 0898712076
Category : Mathematics
Languages : en
Pages : 74
Book Description
This monograph deals with the development of algorithms or the derivation of approximations from linear projections.
Multivariate Polysplines
Author: Ognyan Kounchev
Publisher: Academic Press
ISBN: 0080525008
Category : Mathematics
Languages : en
Pages : 513
Book Description
Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature. - Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic - Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines - Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case - Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property
Publisher: Academic Press
ISBN: 0080525008
Category : Mathematics
Languages : en
Pages : 513
Book Description
Multivariate polysplines are a new mathematical technique that has arisen from a synthesis of approximation theory and the theory of partial differential equations. It is an invaluable means to interpolate practical data with smooth functions. Multivariate polysplines have applications in the design of surfaces and "smoothing" that are essential in computer aided geometric design (CAGD and CAD/CAM systems), geophysics, magnetism, geodesy, geography, wavelet analysis and signal and image processing. In many cases involving practical data in these areas, polysplines are proving more effective than well-established methods, such as kKriging, radial basis functions, thin plate splines and minimum curvature. - Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic - Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines - Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case - Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property
Approximation Theory and Algorithms for Data Analysis
Author: Armin Iske
Publisher: Springer
ISBN: 3030052281
Category : Mathematics
Languages : en
Pages : 363
Book Description
This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.
Publisher: Springer
ISBN: 3030052281
Category : Mathematics
Languages : en
Pages : 363
Book Description
This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.
A Course in Approximation Theory
Author: Elliott Ward Cheney
Publisher: American Mathematical Soc.
ISBN: 0821847988
Category : Mathematics
Languages : en
Pages : 379
Book Description
This textbook is designed for graduate students in mathematics, physics, engineering, and computer science. Its purpose is to guide the reader in exploring contemporary approximation theory. The emphasis is on multi-variable approximation theory, i.e., the approximation of functions in several variables, as opposed to the classical theory of functions in one variable. Most of the topics in the book, heretofore accessible only through research papers, are treated here from the basics to the currently active research, often motivated by practical problems arising in diverse applications such as science, engineering, geophysics, and business and economics. Among these topics are projections, interpolation paradigms, positive definite functions, interpolation theorems of Schoenberg and Micchelli, tomography, artificial neural networks, wavelets, thin-plate splines, box splines, ridge functions, and convolutions. An important and valuable feature of the book is the bibliography of almost 600 items directing the reader to important books and research papers. There are 438 problems and exercises scattered through the book allowing the student reader to get a better understanding of the subject.
Publisher: American Mathematical Soc.
ISBN: 0821847988
Category : Mathematics
Languages : en
Pages : 379
Book Description
This textbook is designed for graduate students in mathematics, physics, engineering, and computer science. Its purpose is to guide the reader in exploring contemporary approximation theory. The emphasis is on multi-variable approximation theory, i.e., the approximation of functions in several variables, as opposed to the classical theory of functions in one variable. Most of the topics in the book, heretofore accessible only through research papers, are treated here from the basics to the currently active research, often motivated by practical problems arising in diverse applications such as science, engineering, geophysics, and business and economics. Among these topics are projections, interpolation paradigms, positive definite functions, interpolation theorems of Schoenberg and Micchelli, tomography, artificial neural networks, wavelets, thin-plate splines, box splines, ridge functions, and convolutions. An important and valuable feature of the book is the bibliography of almost 600 items directing the reader to important books and research papers. There are 438 problems and exercises scattered through the book allowing the student reader to get a better understanding of the subject.
Multivariate Approximation Theory II
Author: Schempp
Publisher: Birkhäuser
ISBN: 3034871899
Category : Mathematics
Languages : en
Pages : 411
Book Description
The Third International Symposium on Hultivariate Approximation Theory was held at the Oberwolfach!1athematical Research Insti tute, Black Forest, February 8-12, 1982. The preceding conferen ces on this topic were held in 1976* and 1979**. The conference brought together 50 mathematicians from 14 coun tries. These Proceedings form arecord of most of the papers pre sented at the Symposium. The topics treated cover different problems on multivariate approximation theory such as new results concerning approxima tion by polynomials in Sobolev spaces, biorthogonal systems and orthogonal series of functions in several variables, multivariate spline functions, group theoretic and functional analytic methods, positive linear operators, error estimates for approximation procedures and cubature formulae, Boolean methods in multivari ate interpolation and the numerical application of summation procedures. Special emphasis was posed on the application of multivariate approximation in various fields of science. One mathematician was sorely missed at the Symposium. Professor Arthur Sard who had actively taken part in the earlier conferen ces passed away in August of 1980. Since he was a friend of many of the participants, the editors wish to dedicate these Procee dings to the memory of this distinguished mathematician. Abrief appreciation of his life and mathematical work appears as well *"Constructive Theory of Functions of Several Variables". Edited by w. Schempp and Karl Zeller. Lecture Notes in 1-1athematics, Vol
Publisher: Birkhäuser
ISBN: 3034871899
Category : Mathematics
Languages : en
Pages : 411
Book Description
The Third International Symposium on Hultivariate Approximation Theory was held at the Oberwolfach!1athematical Research Insti tute, Black Forest, February 8-12, 1982. The preceding conferen ces on this topic were held in 1976* and 1979**. The conference brought together 50 mathematicians from 14 coun tries. These Proceedings form arecord of most of the papers pre sented at the Symposium. The topics treated cover different problems on multivariate approximation theory such as new results concerning approxima tion by polynomials in Sobolev spaces, biorthogonal systems and orthogonal series of functions in several variables, multivariate spline functions, group theoretic and functional analytic methods, positive linear operators, error estimates for approximation procedures and cubature formulae, Boolean methods in multivari ate interpolation and the numerical application of summation procedures. Special emphasis was posed on the application of multivariate approximation in various fields of science. One mathematician was sorely missed at the Symposium. Professor Arthur Sard who had actively taken part in the earlier conferen ces passed away in August of 1980. Since he was a friend of many of the participants, the editors wish to dedicate these Procee dings to the memory of this distinguished mathematician. Abrief appreciation of his life and mathematical work appears as well *"Constructive Theory of Functions of Several Variables". Edited by w. Schempp and Karl Zeller. Lecture Notes in 1-1athematics, Vol
Approximation Theory
Author: George A. Anastassiou
Publisher: Springer Science & Business Media
ISBN: 9780817641511
Category : Mathematics
Languages : en
Pages : 554
Book Description
We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.
Publisher: Springer Science & Business Media
ISBN: 9780817641511
Category : Mathematics
Languages : en
Pages : 554
Book Description
We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.
Multivariate Approximation Theory III
Author: SCHEMPP
Publisher: Birkhäuser
ISBN: 3034893213
Category : Science
Languages : en
Pages : 396
Book Description
The Fourth International Symposium on Multivariate Approximation Theory was held at the Oberwolfach Mathematical Research Insti tute, Black Forest, W.-Germany, during the week of January 20 - 26, 1985. The preceding conferences on this topic were held in 1976, 1979, and 1982 * . We were pleased to have more than 50 mathematicians from 13 countries in attendance. The program in cluded 40 lectures. These Proceedings form a record of most of the papers presented at the Symposium. The topics treated cover different problems on multivariate approximation such as polynomial approximation on simplices, multivariate splines (box-splines, dimension of spline spaces), blending methods, multivariate Hermite interpolation, data smoothing and surface representation, and multivariate summation methods. We would like to thank the director of the Oberwolfach Mathe matical Research Institute, Prof. Dr. M. Barner, and his staff for providing the facilities. Of the people who gave their time to help make this conference a success, we would like to mention in particular Prof. Dr. F.J. Delvos (Siegen), Dr. G. Baszenski (College Station, Texas), and Dipl.-Math. H. Nienhaus (Siegen). Finally, our thanks are due to Carl Einsele of Birkhauser Publishers for his valuable cooperation.
Publisher: Birkhäuser
ISBN: 3034893213
Category : Science
Languages : en
Pages : 396
Book Description
The Fourth International Symposium on Multivariate Approximation Theory was held at the Oberwolfach Mathematical Research Insti tute, Black Forest, W.-Germany, during the week of January 20 - 26, 1985. The preceding conferences on this topic were held in 1976, 1979, and 1982 * . We were pleased to have more than 50 mathematicians from 13 countries in attendance. The program in cluded 40 lectures. These Proceedings form a record of most of the papers presented at the Symposium. The topics treated cover different problems on multivariate approximation such as polynomial approximation on simplices, multivariate splines (box-splines, dimension of spline spaces), blending methods, multivariate Hermite interpolation, data smoothing and surface representation, and multivariate summation methods. We would like to thank the director of the Oberwolfach Mathe matical Research Institute, Prof. Dr. M. Barner, and his staff for providing the facilities. Of the people who gave their time to help make this conference a success, we would like to mention in particular Prof. Dr. F.J. Delvos (Siegen), Dr. G. Baszenski (College Station, Texas), and Dipl.-Math. H. Nienhaus (Siegen). Finally, our thanks are due to Carl Einsele of Birkhauser Publishers for his valuable cooperation.
Topics in Multivariate Approximation
Author: C. K. Chui
Publisher: Elsevier
ISBN: 1483271005
Category : Mathematics
Languages : en
Pages : 346
Book Description
Topics in Multivariate Approximation contains the proceedings of an international workshop on multivariate approximation held at the University of Chile in Santiago, Chile, on December 15-19, 1986. Leading researchers in the field discussed several problem areas related to multivariate approximation and tackled topics ranging from multivariate splines and fitting of scattered data to tensor approximation methods and multivariate polynomial approximation. Numerical grid generation and finite element methods were also explored, along with constrained interpolation and smoothing. Comprised of 22 chapters, this book first describes the application of Boolean methods of approximation in combination with the theory of right invertible operators to bivariate Fourier expansions. The reader is then introduced to ill-posed problems in multivariate approximation; interpolation of scattered data by radial functions; and shape-preserving surface interpolation. Subsequent chapters focus on approximation by harmonic functions; numerical generation of nested series of general triangular grids; triangulation methods; and inequalities arising from best local approximations in rectangles. A bibliography of multivariate approximation concludes the book. This monograph will be of interest to mathematicians.
Publisher: Elsevier
ISBN: 1483271005
Category : Mathematics
Languages : en
Pages : 346
Book Description
Topics in Multivariate Approximation contains the proceedings of an international workshop on multivariate approximation held at the University of Chile in Santiago, Chile, on December 15-19, 1986. Leading researchers in the field discussed several problem areas related to multivariate approximation and tackled topics ranging from multivariate splines and fitting of scattered data to tensor approximation methods and multivariate polynomial approximation. Numerical grid generation and finite element methods were also explored, along with constrained interpolation and smoothing. Comprised of 22 chapters, this book first describes the application of Boolean methods of approximation in combination with the theory of right invertible operators to bivariate Fourier expansions. The reader is then introduced to ill-posed problems in multivariate approximation; interpolation of scattered data by radial functions; and shape-preserving surface interpolation. Subsequent chapters focus on approximation by harmonic functions; numerical generation of nested series of general triangular grids; triangulation methods; and inequalities arising from best local approximations in rectangles. A bibliography of multivariate approximation concludes the book. This monograph will be of interest to mathematicians.