Multiscale Models in Mechano and Tumor Biology

Multiscale Models in Mechano and Tumor Biology PDF Author: Alf Gerisch
Publisher: Springer
ISBN: 3319733710
Category : Mathematics
Languages : en
Pages : 205

Get Book Here

Book Description
This book presents and discusses the state of the art and future perspectives in mathematical modeling and homogenization techniques with the focus on addressing key physiological issues in the context of multiphase healthy and malignant biological materials. The highly interdisciplinary content brings together contributions from scientists with complementary areas of expertise, such as pure and applied mathematicians, engineers, and biophysicists. The book also features the lecture notes from a half-day introductory course on asymptotic homogenization. These notes are suitable for undergraduate mathematics or physics students, while the other chapters are aimed at graduate students and researchers.

Multiscale Modeling in Biomechanics and Mechanobiology

Multiscale Modeling in Biomechanics and Mechanobiology PDF Author: Suvranu De
Publisher: Springer
ISBN: 1447165993
Category : Technology & Engineering
Languages : en
Pages : 287

Get Book Here

Book Description
Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.

The Mathematics of Mechanobiology

The Mathematics of Mechanobiology PDF Author: Antonio DeSimone
Publisher: Springer Nature
ISBN: 3030451976
Category : Mathematics
Languages : en
Pages : 217

Get Book Here

Book Description
This book presents the state of the art in mathematical research on modelling the mechanics of biological systems – a science at the intersection between biology, mechanics and mathematics known as mechanobiology. The book gathers comprehensive surveys of the most significant areas of mechanobiology: cell motility and locomotion by shape control (Antonio DeSimone); models of cell motion and tissue growth (Benoît Perthame); numerical simulation of cardiac electromechanics (Alfio Quarteroni); and power-stroke-driven muscle contraction (Lev Truskinovsky). Each section is self-contained in terms of the biomechanical background, and the content is accessible to all readers with a basic understanding of differential equations and numerical analysis. The book disentangles the phenomenological complexity of the biomechanical problems, while at the same time addressing the mathematical complexity with invaluable clarity. The book is intended for a wide audience, in particular graduate students and applied mathematicians interested in entering this fascinating field.

Constitutive Modelling of Solid Continua

Constitutive Modelling of Solid Continua PDF Author: José Merodio
Publisher: Springer Nature
ISBN: 3030315479
Category : Science
Languages : en
Pages : 397

Get Book Here

Book Description
This volume consists of a collection of chapters by recognized experts to provide a comprehensive fundamental theoretical continuum treatment of constitutive laws used for modelling the mechanical and coupled-field properties of various types of solid materials. It covers the main types of solid material behaviour, including isotropic and anisotropic nonlinear elasticity, implicit theories, viscoelasticity, plasticity, electro- and magneto-mechanical interactions, growth, damage, thermomechanics, poroelasticity, composites and homogenization. The volume provides a general framework for research in a wide range of applications involving the deformation of solid materials. It will be of considerable benefit to both established and early career researchers concerned with fundamental theory in solid mechanics and its applications by collecting diverse material in a single volume. The readership ranges from beginning graduate students to senior researchers in academia and industry.

Scientific Computing

Scientific Computing PDF Author: John A. Trangenstein
Publisher: Springer
ISBN: 3319691074
Category : Mathematics
Languages : en
Pages : 621

Get Book Here

Book Description
This is the second of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses more advanced topics than volume one, and is largely not a prerequisite for volume three. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 49 examples, 110 exercises, 66 algorithms, 24 interactive JavaScript programs, 77 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in LAPACK, GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either upper level undergraduates or first year graduate students. Parts of the text could be used for specialized courses, such as nonlinear optimization or iterative linear algebra.

DUNE — The Distributed and Unified Numerics Environment

DUNE — The Distributed and Unified Numerics Environment PDF Author: Oliver Sander
Publisher: Springer Nature
ISBN: 3030597024
Category : Computers
Languages : en
Pages : 616

Get Book Here

Book Description
The Distributed and Unified Numerics Environment (Dune) is a set of open-source C++ libraries for the implementation of finite element and finite volume methods. Over the last 15 years it has become one of the most commonly used libraries for the implementation of new, efficient simulation methods in science and engineering. Describing the main Dune libraries in detail, this book covers access to core features like grids, shape functions, and linear algebra, but also higher-level topics like function space bases and assemblers. It includes extensive information on programmer interfaces, together with a wealth of completed examples that illustrate how these interfaces are used in practice. After having read the book, readers will be prepared to write their own advanced finite element simulators, tapping the power of Dune to do so.

Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018

Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018 PDF Author: Gabriel R. Barrenechea
Publisher: Springer Nature
ISBN: 3030418006
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
This volume gathers papers presented at the international conference BAIL, which was held at the University of Strathclyde, Scotland from the 14th to the 22nd of June 2018. The conference gathered specialists in the asymptotic and numerical analysis of problems which exhibit layers and interfaces. Covering a wide range of topics and sharing a wealth of insights, the papers in this volume provide an overview of the latest research into the theory and numerical approximation of problems involving boundary and interior layers.

Numerical Geometry, Grid Generation and Scientific Computing

Numerical Geometry, Grid Generation and Scientific Computing PDF Author: Vladimir A. Garanzha
Publisher: Springer Nature
ISBN: 3030767981
Category : Mathematics
Languages : en
Pages : 419

Get Book Here

Book Description
The focus of these conference proceedings is on research, development, and applications in the fields of numerical geometry, scientific computing and numerical simulation, particularly in mesh generation and related problems. In addition, this year’s special focus is on Delaunay triangulations and their applications, celebrating the 130th birthday of Boris Delaunay. In terms of content, the book strikes a balance between engineering algorithms and mathematical foundations. It presents an overview of recent advances in numerical geometry, grid generation and adaptation in terms of mathematical foundations, algorithm and software development and applications. The specific topics covered include: quasi-conformal and quasi-isometric mappings, hyperelastic deformations, multidimensional generalisations of the equidistribution principle, discrete differential geometry, spatial and metric encodings, Voronoi-Delaunay theory for tilings and partitions, duality in mathematical programming and numerical geometry, mesh-based optimisation and optimal control methods. Further aspects examined include iterative solvers for variational problems and algorithm and software development. The applications of the methods discussed are multidisciplinary and include problems from mathematics, physics, biology, chemistry, material science, and engineering.

Numerical Mathematics and Advanced Applications ENUMATH 2019

Numerical Mathematics and Advanced Applications ENUMATH 2019 PDF Author: Fred J. Vermolen
Publisher: Springer Nature
ISBN: 3030558746
Category : Mathematics
Languages : en
Pages : 1185

Get Book Here

Book Description
This book gathers outstanding papers presented at the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2019). The conference was organized by Delft University of Technology and was held in Egmond aan Zee, the Netherlands, from September 30 to October 4, 2019. Leading experts in the field presented the latest results and ideas regarding the design, implementation and analysis of numerical algorithms, as well as their applications to relevant societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications, all examined at the highest level of international expertise. The first ENUMATH was held in Paris in 1995, with successive installments at various sites across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), Ankara (2015) and Bergen (2017).

BEM-based Finite Element Approaches on Polytopal Meshes

BEM-based Finite Element Approaches on Polytopal Meshes PDF Author: Steffen Weißer
Publisher: Springer
ISBN: 303020961X
Category : Computers
Languages : en
Pages : 258

Get Book Here

Book Description
This book introduces readers to one of the first methods developed for the numerical treatment of boundary value problems on polygonal and polyhedral meshes, which it subsequently analyzes and applies in various scenarios. The BEM-based finite element approaches employs implicitly defined trial functions, which are treated locally by means of boundary integral equations. A detailed construction of high-order approximation spaces is discussed and applied to uniform, adaptive and anisotropic polytopal meshes. The main benefits of these general discretizations are the flexible handling they offer for meshes, and their natural incorporation of hanging nodes. This can especially be seen in adaptive finite element strategies and when anisotropic meshes are used. Moreover, this approach allows for problem-adapted approximation spaces as presented for convection-dominated diffusion equations. All theoretical results and considerations discussed in the book are verified and illustrated by several numerical examples and experiments. Given its scope, the book will be of interest to mathematicians in the field of boundary value problems, engineers with a (mathematical) background in finite element methods, and advanced graduate students.