Multiscale Lattices and Composite Materials: Optimal Design, Modeling and Characterization

Multiscale Lattices and Composite Materials: Optimal Design, Modeling and Characterization PDF Author: Fernando Fraternali
Publisher: Frontiers Media SA
ISBN: 2889631850
Category :
Languages : en
Pages : 180

Get Book Here

Book Description

Multiscale Lattices and Composite Materials: Optimal Design, Modeling and Characterization

Multiscale Lattices and Composite Materials: Optimal Design, Modeling and Characterization PDF Author: Fernando Fraternali
Publisher: Frontiers Media SA
ISBN: 2889631850
Category :
Languages : en
Pages : 180

Get Book Here

Book Description


4D Printing, Volume 1

4D Printing, Volume 1 PDF Author: Frederic Demoly
Publisher: John Wiley & Sons
ISBN: 1394163770
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book Here

Book Description
Any time objects and their (self-)organization are to be put into use, their models and methods of thinking as well as their designing and manufacturing need to be reinvented. 4D printing is a future technology that is capable of bringing 3D objects to life. This ability, which gives objects the power to change shape or properties over time through energy stimulation from active materials and additive manufacturing, makes it possible to envisage technological breakthroughs while challenging the relationship between people and objects. 4D Printing 1 presents the different facets of this technology, providing an objective, critical and even disruptive viewpoint to enable its existence and development, and to stimulate the creative drive that industry, society and humanity need in the perpetual quest for evolution and transformation.

Mechcomp3

Mechcomp3 PDF Author: Antonio J.M. Ferreira
Publisher: Società Editrice Esculapio
ISBN: 889385029X
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
The use of composite materials has grown exponentially in the last decades and has affected many engineering fields due to their enhanced mechanical properties and improved features with respect to conventional materials. For instance, they are employed in civil engineering (seismic isolators, long-span bridges, vaults), mechanical engineering (turbines, machine components), aerospace and naval engineering (fuselages, boat hulls and sails), automotive engineering (car bodies, tires), and biomechanical engineering (prostheses).Nevertheless, the greater use of composites requires a rapid progress in gaining the needed knowledge to design and manufacture composite structures. Thus, researchers and designers devote their own efforts to develop new analysis techniques, design methodologies, manufacturing procedures, micromechanics approaches, theoretical models, and numerical methods. For these purpose, it is extremely easy to find many recent journal papers, books, and technical notes, focused on the mechanics of composites. In particular, several studies are presented to take advantage of their superior features by varying some typical structural parameters (such as geometry, fiber orientations, volume fraction, structural stiffness, weight, lamination scheme). Therefore, this Conference aims to collect contributions from every part of the globe that can increase the knowledge of composite materials and their applications, by engaging researches and professional engineers and designers from different sectors. The same aims and scopes have been reached by the previous editions of Mechanics of Composites International Conferences (MECHCOMP), which occurred in 2014 at Stony Brook University (USA) and in 2016 at University of Porto (Portugal).

Architectured Materials in Nature and Engineering

Architectured Materials in Nature and Engineering PDF Author: Yuri Estrin
Publisher: Springer
ISBN: 3030119424
Category : Technology & Engineering
Languages : en
Pages : 457

Get Book Here

Book Description
This book deals with a group of architectured materials. These are hybrid materials in which the constituents (even strongly dissimilar ones) are combined in a given topology and geometry to provide otherwise conflicting properties. The hybridization presented in the book occurs at various levels - from the molecular to the macroscopic (say, sub-centimeter) ones. This monograph represents a collection of programmatic chapters, defining archimats and summarizing the results obtained by using the geometry-inspired materials design. The area of architectured or geometry-inspired materials has reached a certain level of maturity and visibility for a comprehensive presentation in book form. It is written by a group of authors who are active researchers working on various aspects of architectured materials. Through its 14 chapters, the book provides definitions and descriptions of the archetypes of architectured materials and addresses the various techniques in which they can be designed, optimized, and manufactured. It covers a broad realm of archimats, from the ones occurring in nature to those that have been engineered, and discusses a range of their possible applications. The book provides inspiring and scientifically profound, yet entertaining, reading for the materials science community and beyond.

Multiscale Structural Topology Optimization

Multiscale Structural Topology Optimization PDF Author: Liang Xia
Publisher: Elsevier
ISBN: 0081011865
Category : Technology & Engineering
Languages : en
Pages : 186

Get Book Here

Book Description
Multiscale Structural Topology Optimization discusses the development of a multiscale design framework for topology optimization of multiscale nonlinear structures. With the intention to alleviate the heavy computational burden of the design framework, the authors present a POD-based adaptive surrogate model for the RVE solutions at the microscopic scale and make a step further towards the design of multiscale elastoviscoplastic structures. Various optimization methods for structural size, shape, and topology designs have been developed and widely employed in engineering applications. Topology optimization has been recognized as one of the most effective tools for least weight and performance design, especially in aeronautics and aerospace engineering. This book focuses on the simultaneous design of both macroscopic structure and microscopic materials. In this model, the material microstructures are optimized in response to the macroscopic solution, which results in the nonlinearity of the equilibrium problem of the interface of the two scales. The authors include a reduce database model from a set of numerical experiments in the space of effective strain. - Presents the first attempts towards topology optimization design of nonlinear highly heterogeneous structures - Helps with simultaneous design of the topologies of both macroscopic structure and microscopic materials - Helps with development of computer codes for the designs of nonlinear structures and of materials with extreme constitutive properties - Focuses on the simultaneous design of both macroscopic structure and microscopic materials - Includes a reduce database model from a set of numerical experiments in the space of effective strain

Computational Methods for Solids and Fluids

Computational Methods for Solids and Fluids PDF Author: Adnan Ibrahimbegovic
Publisher: Springer
ISBN: 3319279963
Category : Technology & Engineering
Languages : en
Pages : 497

Get Book Here

Book Description
This volume contains the best papers presented at the 2nd ECCOMAS International Conference on Multiscale Computations for Solids and Fluids, held June 10-12, 2015. Topics dealt with include multiscale strategy for efficient development of scientific software for large-scale computations, coupled probability-nonlinear-mechanics problems and solution methods, and modern mathematical and computational setting for multi-phase flows and fluid-structure interaction. The papers consist of contributions by six experts who taught short courses prior to the conference, along with several selected articles from other participants dealing with complementary issues, covering both solid mechanics and applied mathematics.

Handbook of Compliant Mechanisms

Handbook of Compliant Mechanisms PDF Author: Larry L. Howell
Publisher: John Wiley & Sons
ISBN: 1119953456
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description
A fully illustrated reference book giving an easy-to-understand introduction to compliant mechanisms A broad compilation of compliant mechanisms to give inspiration and guidance to those interested in using compliant mechanisms in their designs, the Handbook of Compliant Mechanisms includes graphics and descriptions of many compliant mechanisms. It comprises an extensive categorization of devices that can be used to help readers identify compliant mechanisms related to their application. It also provides chapters on the basic background in compliant mechanisms, the categories of compliant mechanisms, and an example of how the Compendium can be used to facilitate compliant mechanism design. Fully illustrated throughout to be easily understood and accessible at introductory levels Covers all aspects pertaining to classification, elements, mechanisms and applications of compliant mechanisms Summarizes a vast body of knowledge in easily understood diagrams and explanations Helps readers appreciate the advantages that compliant mechanisms have to offer Practical approach is ideal for potential practitioners who would like to realize designs with compliant mechanisms, members and elements Breadth of topics covered also makes the book a useful reference for more advanced readers Intended as an introduction to the area, the Handbook avoids technical jargon to assist non engineers involved in product design, inventors and engineers in finding clever solutions to problems of design and function.

Chemical Engineering Progress

Chemical Engineering Progress PDF Author:
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages : 558

Get Book Here

Book Description


Linear and Nonlinear Waves in Microstructured Solids

Linear and Nonlinear Waves in Microstructured Solids PDF Author: Igor V. Andrianov
Publisher: CRC Press
ISBN: 1000372219
Category : Technology & Engineering
Languages : en
Pages : 322

Get Book Here

Book Description
This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.

Applied Micromechanics of Complex Microstructures

Applied Micromechanics of Complex Microstructures PDF Author: Majid Baniassadi
Publisher: Elsevier
ISBN: 0443189927
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
Applied Micromechanics of Complex Microstructures explains the fundamental concepts of continuum modeling of various complicated microstructures, covering nanocomposites, multiphase composites, biomaterials, biological materials, and more. The authors outline the calculation of effective mechanical and thermal properties, allowing readers to understand the step-by-step modeling and homogenization of complicated microstructures, and the book also features a chapter on microstructure hull and material design. Modeling of complex samples with nonlinear properties such as neural tissue, bone microstructure, and liver tissue is also explained and analyzed. Explains the core concepts of continuum modeling of different complex microstructures, including nanocomposites, multiphase composites, biomaterials, and biological materials Provides detailed calculations of eff ective mechanical and thermal properties allowing the audience to understand the modeling and homogenization of complex microstructures Covers several methods for designing the microstructure of heterogeneous materials