Author: Professor Gregoire Mariethoz
Publisher: John Wiley & Sons
ISBN: 111866275X
Category : Science
Languages : en
Pages : 376
Book Description
This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overview of this new field in three parts. Part I presents a conceptual comparison between traditional random function theory and stochastic modelling based on training images, where random function theory is not always used. Part II covers in detail various algorithms and methodologies starting from basic building blocks in statistical science and computer science. Concepts such as non-stationary and multi-variate modeling, consistency between data and model, the construction of training images and inverse modelling are treated. Part III covers three example application areas, namely, reservoir modelling, mineral resources modelling and climate model downscaling. This book will be an invaluable reference for students, researchers and practitioners of all areas of the Earth Sciences where forecasting based on spatio-temporal data is performed.
Multiple-point Geostatistics
Author: Professor Gregoire Mariethoz
Publisher: John Wiley & Sons
ISBN: 111866275X
Category : Science
Languages : en
Pages : 376
Book Description
This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overview of this new field in three parts. Part I presents a conceptual comparison between traditional random function theory and stochastic modelling based on training images, where random function theory is not always used. Part II covers in detail various algorithms and methodologies starting from basic building blocks in statistical science and computer science. Concepts such as non-stationary and multi-variate modeling, consistency between data and model, the construction of training images and inverse modelling are treated. Part III covers three example application areas, namely, reservoir modelling, mineral resources modelling and climate model downscaling. This book will be an invaluable reference for students, researchers and practitioners of all areas of the Earth Sciences where forecasting based on spatio-temporal data is performed.
Publisher: John Wiley & Sons
ISBN: 111866275X
Category : Science
Languages : en
Pages : 376
Book Description
This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overview of this new field in three parts. Part I presents a conceptual comparison between traditional random function theory and stochastic modelling based on training images, where random function theory is not always used. Part II covers in detail various algorithms and methodologies starting from basic building blocks in statistical science and computer science. Concepts such as non-stationary and multi-variate modeling, consistency between data and model, the construction of training images and inverse modelling are treated. Part III covers three example application areas, namely, reservoir modelling, mineral resources modelling and climate model downscaling. This book will be an invaluable reference for students, researchers and practitioners of all areas of the Earth Sciences where forecasting based on spatio-temporal data is performed.
Handbook of Mathematical Geosciences
Author: B.S. Daya Sagar
Publisher: Springer
ISBN: 3319789996
Category : Science
Languages : en
Pages : 911
Book Description
This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.
Publisher: Springer
ISBN: 3319789996
Category : Science
Languages : en
Pages : 911
Book Description
This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.
Integration of Outcrop and Modern Analogs in Reservoir Modeling
Author: G. Michael Grammer
Publisher: AAPG
ISBN: 0891813616
Category : Carbonates
Languages : en
Pages : 392
Book Description
Publisher: AAPG
ISBN: 0891813616
Category : Carbonates
Languages : en
Pages : 392
Book Description
Applied Geostatistics with SGeMS
Author: Nicolas Remy
Publisher: Cambridge University Press
ISBN: 1139473468
Category : Science
Languages : en
Pages : 302
Book Description
The Stanford Geostatistical Modeling Software (SGeMS) is an open-source computer package for solving problems involving spatially related variables. It provides geostatistics practitioners with a user-friendly interface, an interactive 3-D visualization, and a wide selection of algorithms. This practical book provides a step-by-step guide to using SGeMS algorithms. It explains the underlying theory, demonstrates their implementation, discusses their potential limitations, and helps the user make an informed decision about the choice of one algorithm over another. Users can complete complex tasks using the embedded scripting language, and new algorithms can be developed and integrated through the SGeMS plug-in mechanism. SGeMS was the first software to provide algorithms for multiple-point statistics, and the book presents a discussion of the corresponding theory and applications. Incorporating the full SGeMS software (now available from www.cambridge.org/9781107403246), this book is a useful user-guide for Earth Science graduates and researchers, as well as practitioners of environmental mining and petroleum engineering.
Publisher: Cambridge University Press
ISBN: 1139473468
Category : Science
Languages : en
Pages : 302
Book Description
The Stanford Geostatistical Modeling Software (SGeMS) is an open-source computer package for solving problems involving spatially related variables. It provides geostatistics practitioners with a user-friendly interface, an interactive 3-D visualization, and a wide selection of algorithms. This practical book provides a step-by-step guide to using SGeMS algorithms. It explains the underlying theory, demonstrates their implementation, discusses their potential limitations, and helps the user make an informed decision about the choice of one algorithm over another. Users can complete complex tasks using the embedded scripting language, and new algorithms can be developed and integrated through the SGeMS plug-in mechanism. SGeMS was the first software to provide algorithms for multiple-point statistics, and the book presents a discussion of the corresponding theory and applications. Incorporating the full SGeMS software (now available from www.cambridge.org/9781107403246), this book is a useful user-guide for Earth Science graduates and researchers, as well as practitioners of environmental mining and petroleum engineering.
Geostatistical Reservoir Modeling
Author: Michael J. Pyrcz
Publisher: Oxford University Press
ISBN: 0199358834
Category : Mathematics
Languages : en
Pages : 449
Book Description
Published in 2002, the first edition of Geostatistical Reservoir Modeling brought the practice of petroleum geostatistics into a coherent framework, focusing on tools, techniques, examples, and guidance. It emphasized the interaction between geophysicists, geologists, and engineers, and was received well by professionals, academics, and both graduate and undergraduate students. In this revised second edition, Deutsch collaborates with co-author Michael Pyrcz to provide an expanded (in coverage and format), full color illustrated, more comprehensive treatment of the subject with a full update on the latest tools, methods, practice, and research in the field of petroleum Geostatistics. Key geostatistical concepts such as integration of geologic data and concepts, scale considerations, and uncertainty models receive greater attention, and new comprehensive sections are provided on preliminary geological modeling concepts, data inventory, conceptual model, problem formulation, large scale modeling, multiple point-based simulation and event-based modeling. Geostatistical methods are extensively illustrated through enhanced schematics, work flows and examples with discussion on method capabilities and selection. For example, this expanded second edition includes extensive discussion on the process of moving from an inventory of data and concepts through conceptual model to problem formulation to solve practical reservoir problems. A greater number of examples are included, with a set of practical geostatistical studies developed to illustrate the steps from data analysis and cleaning to post-processing, and ranking. New methods, which have developed in the field since the publication of the first edition, are discussed, such as models for integration of diverse data sources, multiple point-based simulation, event-based simulation, spatial bootstrap and methods to summarize geostatistical realizations.
Publisher: Oxford University Press
ISBN: 0199358834
Category : Mathematics
Languages : en
Pages : 449
Book Description
Published in 2002, the first edition of Geostatistical Reservoir Modeling brought the practice of petroleum geostatistics into a coherent framework, focusing on tools, techniques, examples, and guidance. It emphasized the interaction between geophysicists, geologists, and engineers, and was received well by professionals, academics, and both graduate and undergraduate students. In this revised second edition, Deutsch collaborates with co-author Michael Pyrcz to provide an expanded (in coverage and format), full color illustrated, more comprehensive treatment of the subject with a full update on the latest tools, methods, practice, and research in the field of petroleum Geostatistics. Key geostatistical concepts such as integration of geologic data and concepts, scale considerations, and uncertainty models receive greater attention, and new comprehensive sections are provided on preliminary geological modeling concepts, data inventory, conceptual model, problem formulation, large scale modeling, multiple point-based simulation and event-based modeling. Geostatistical methods are extensively illustrated through enhanced schematics, work flows and examples with discussion on method capabilities and selection. For example, this expanded second edition includes extensive discussion on the process of moving from an inventory of data and concepts through conceptual model to problem formulation to solve practical reservoir problems. A greater number of examples are included, with a set of practical geostatistical studies developed to illustrate the steps from data analysis and cleaning to post-processing, and ranking. New methods, which have developed in the field since the publication of the first edition, are discussed, such as models for integration of diverse data sources, multiple point-based simulation, event-based simulation, spatial bootstrap and methods to summarize geostatistical realizations.
Solved Problems in Geostatistics
Author: Oy Leuangthong
Publisher: John Wiley & Sons
ISBN: 1118210514
Category : Mathematics
Languages : en
Pages : 145
Book Description
This unique book presents a learn-by-doing introduction to geostatistics. Geostatistics provides the essential numerical tools for addressing research problems that are encountered in fields of study such as geology, engineering, and the earth sciences. Illustrating key methods through both theoretical and practical exercises, Solved Problems in Geostatistics is a valuable and well-organized collection of worked-out problems that allow the reader to master the statistical techniques for modeling data in the geological sciences. The book's scope of coverage begins with the elements from statistics and probability that form the foundation of most geostatistical methodologies, such as declustering, debiasing methods, and Monte Carlo simulation. Next, the authors delve into three fundamental areas in conventional geostatistics: covariance and variogram functions; kriging; and Gaussian simulation. Finally, special topics are introduced through problems involving utility theory, loss functions, and multiple-point geostatistics. Each topic is treated in the same clearly organized format. First, an objective presents the main concepts that will be established in the section. Next, the background and assumptions are outlined, supplying the comprehensive foundation that is necessary to begin work on the problem. A solution plan demonstrates the steps and considerations that have to be taken when working with the exercise, and the solution allows the reader to check their work. Finally, a remarks section highlights the overarching principles and noteworthy aspects of the problem. Additional exercises are available via a related Web site, which also includes data related to the book problems and software programs that facilitate their resolution. Enforcing a truly hands-on approach to the topic, Solved Problems in Geostatistics is an indispensable supplement for courses on geostatistics and spatial statistics a the upper-undergraduate and graduate levels.It also serves as an applied reference for practicing professionals in the geosciences.
Publisher: John Wiley & Sons
ISBN: 1118210514
Category : Mathematics
Languages : en
Pages : 145
Book Description
This unique book presents a learn-by-doing introduction to geostatistics. Geostatistics provides the essential numerical tools for addressing research problems that are encountered in fields of study such as geology, engineering, and the earth sciences. Illustrating key methods through both theoretical and practical exercises, Solved Problems in Geostatistics is a valuable and well-organized collection of worked-out problems that allow the reader to master the statistical techniques for modeling data in the geological sciences. The book's scope of coverage begins with the elements from statistics and probability that form the foundation of most geostatistical methodologies, such as declustering, debiasing methods, and Monte Carlo simulation. Next, the authors delve into three fundamental areas in conventional geostatistics: covariance and variogram functions; kriging; and Gaussian simulation. Finally, special topics are introduced through problems involving utility theory, loss functions, and multiple-point geostatistics. Each topic is treated in the same clearly organized format. First, an objective presents the main concepts that will be established in the section. Next, the background and assumptions are outlined, supplying the comprehensive foundation that is necessary to begin work on the problem. A solution plan demonstrates the steps and considerations that have to be taken when working with the exercise, and the solution allows the reader to check their work. Finally, a remarks section highlights the overarching principles and noteworthy aspects of the problem. Additional exercises are available via a related Web site, which also includes data related to the book problems and software programs that facilitate their resolution. Enforcing a truly hands-on approach to the topic, Solved Problems in Geostatistics is an indispensable supplement for courses on geostatistics and spatial statistics a the upper-undergraduate and graduate levels.It also serves as an applied reference for practicing professionals in the geosciences.
Model-based Geostatistics for Global Public Health
Author: Peter J. Diggle
Publisher: CRC Press
ISBN: 1351743260
Category : Mathematics
Languages : en
Pages : 211
Book Description
Model-based Geostatistics for Global Public Health: Methods and Applications provides an introductory account of model-based geostatistics, its implementation in open-source software and its application in public health research. In the public health problems that are the focus of this book, the authors describe and explain the pattern of spatial variation in a health outcome or exposure measurement of interest. Model-based geostatistics uses explicit probability models and established principles of statistical inference to address questions of this kind. Features: Presents state-of-the-art methods in model-based geostatistics. Discusses the application these methods some of the most challenging global public health problems including disease mapping, exposure mapping and environmental epidemiology. Describes exploratory methods for analysing geostatistical data, including: diagnostic checking of residuals standard linear and generalized linear models; variogram analysis; Gaussian process models and geostatistical design issues. Includes a range of more complex geostatistical problems where research is ongoing. All of the results in the book are reproducible using publicly available R code and data-sets, as well as a dedicated R package. This book has been written to be accessible not only to statisticians but also to students and researchers in the public health sciences. The Authors Peter Diggle is Distinguished University Professor of Statistics in the Faculty of Health and Medicine, Lancaster University. He also holds honorary positions at the Johns Hopkins University School of Public Health, Columbia University International Research Institute for Climate and Society, and Yale University School of Public Health. His research involves the development of statistical methods for analyzing spatial and longitudinal data and their applications in the biomedical and health sciences. Dr Emanuele Giorgi is a Lecturer in Biostatistics and member of the CHICAS research group at Lancaster University, where he formerly obtained a PhD in Statistics and Epidemiology in 2015. His research interests involve the development of novel geostatistical methods for disease mapping, with a special focus on malaria and other tropical diseases. In 2018, Dr Giorgi was awarded the Royal Statistical Society Research Prize "for outstanding published contribution at the interface of statistics and epidemiology." He is also the lead developer of PrevMap, an R package where all the methodology found in this book has been implemented.
Publisher: CRC Press
ISBN: 1351743260
Category : Mathematics
Languages : en
Pages : 211
Book Description
Model-based Geostatistics for Global Public Health: Methods and Applications provides an introductory account of model-based geostatistics, its implementation in open-source software and its application in public health research. In the public health problems that are the focus of this book, the authors describe and explain the pattern of spatial variation in a health outcome or exposure measurement of interest. Model-based geostatistics uses explicit probability models and established principles of statistical inference to address questions of this kind. Features: Presents state-of-the-art methods in model-based geostatistics. Discusses the application these methods some of the most challenging global public health problems including disease mapping, exposure mapping and environmental epidemiology. Describes exploratory methods for analysing geostatistical data, including: diagnostic checking of residuals standard linear and generalized linear models; variogram analysis; Gaussian process models and geostatistical design issues. Includes a range of more complex geostatistical problems where research is ongoing. All of the results in the book are reproducible using publicly available R code and data-sets, as well as a dedicated R package. This book has been written to be accessible not only to statisticians but also to students and researchers in the public health sciences. The Authors Peter Diggle is Distinguished University Professor of Statistics in the Faculty of Health and Medicine, Lancaster University. He also holds honorary positions at the Johns Hopkins University School of Public Health, Columbia University International Research Institute for Climate and Society, and Yale University School of Public Health. His research involves the development of statistical methods for analyzing spatial and longitudinal data and their applications in the biomedical and health sciences. Dr Emanuele Giorgi is a Lecturer in Biostatistics and member of the CHICAS research group at Lancaster University, where he formerly obtained a PhD in Statistics and Epidemiology in 2015. His research interests involve the development of novel geostatistical methods for disease mapping, with a special focus on malaria and other tropical diseases. In 2018, Dr Giorgi was awarded the Royal Statistical Society Research Prize "for outstanding published contribution at the interface of statistics and epidemiology." He is also the lead developer of PrevMap, an R package where all the methodology found in this book has been implemented.
Geostatistics Tróia '92
Author: A.O. Soares
Publisher: Springer Science & Business Media
ISBN: 940111739X
Category : Science
Languages : en
Pages : 1097
Book Description
The contributions in this book were presented at the Fourth International Geostatistics Congress held in Tróia, Portugal, in September 1992. They provide a comprehensive account of the current state of the art of geostatistics, including recent theoretical developments and new applications. In particular, readers will find descriptions and applications of the more recent methods of stochastic simulation together with data integration techniques applied to the modelling of hydrocabon reservoirs. In other fields there are stationary and non-stationary geostatistical applications to geology, climatology, pollution control, soil science, hydrology and human sciences. The papers also provide an insight into new trends in geostatistics particularly the increasing interaction with many other scientific disciplines. This book is a significant reference work for practitioners of geostatistics both in academia and industry.
Publisher: Springer Science & Business Media
ISBN: 940111739X
Category : Science
Languages : en
Pages : 1097
Book Description
The contributions in this book were presented at the Fourth International Geostatistics Congress held in Tróia, Portugal, in September 1992. They provide a comprehensive account of the current state of the art of geostatistics, including recent theoretical developments and new applications. In particular, readers will find descriptions and applications of the more recent methods of stochastic simulation together with data integration techniques applied to the modelling of hydrocabon reservoirs. In other fields there are stationary and non-stationary geostatistical applications to geology, climatology, pollution control, soil science, hydrology and human sciences. The papers also provide an insight into new trends in geostatistics particularly the increasing interaction with many other scientific disciplines. This book is a significant reference work for practitioners of geostatistics both in academia and industry.
Geostatistical Functional Data Analysis
Author: Jorge Mateu
Publisher: John Wiley & Sons
ISBN: 1119387841
Category : Social Science
Languages : en
Pages : 452
Book Description
Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.
Publisher: John Wiley & Sons
ISBN: 1119387841
Category : Social Science
Languages : en
Pages : 452
Book Description
Geostatistical Functional Data Analysis Explore the intersection between geostatistics and functional data analysis with this insightful new reference Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field. Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes: A thorough introduction to the spatial kriging methodology when working with functions A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.
Modeling Uncertainty in the Earth Sciences
Author: Jef Caers
Publisher: John Wiley & Sons
ISBN: 1119998719
Category : Science
Languages : en
Pages : 294
Book Description
Modeling Uncertainty in the Earth Sciences highlights the various issues, techniques and practical modeling tools available for modeling the uncertainty of complex Earth systems and the impact that it has on practical situations. The aim of the book is to provide an introductory overview which covers a broad range of tried-and-tested tools. Descriptions of concepts, philosophies, challenges, methodologies and workflows give the reader an understanding of the best way to make decisions under uncertainty for Earth Science problems. The book covers key issues such as: Spatial and time aspect; large complexity and dimensionality; computation power; costs of 'engineering' the Earth; uncertainty in the modeling and decision process. Focusing on reliable and practical methods this book provides an invaluable primer for the complex area of decision making with uncertainty in the Earth Sciences.
Publisher: John Wiley & Sons
ISBN: 1119998719
Category : Science
Languages : en
Pages : 294
Book Description
Modeling Uncertainty in the Earth Sciences highlights the various issues, techniques and practical modeling tools available for modeling the uncertainty of complex Earth systems and the impact that it has on practical situations. The aim of the book is to provide an introductory overview which covers a broad range of tried-and-tested tools. Descriptions of concepts, philosophies, challenges, methodologies and workflows give the reader an understanding of the best way to make decisions under uncertainty for Earth Science problems. The book covers key issues such as: Spatial and time aspect; large complexity and dimensionality; computation power; costs of 'engineering' the Earth; uncertainty in the modeling and decision process. Focusing on reliable and practical methods this book provides an invaluable primer for the complex area of decision making with uncertainty in the Earth Sciences.