Multiphase Mass Transfer and Capillary Properties of Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

Multiphase Mass Transfer and Capillary Properties of Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells PDF Author: Jeff Gostick
Publisher:
ISBN:
Category :
Languages : en
Pages : 203

Get Book Here

Book Description
A detailed understanding of mass transport and water behavior in gas diffusion layers (GDLs) for polymer electrolyte membrane fuel cells (PEMFCs) is vital to improving performance. Liquid water fills the porous GDL and electrode components, hindering mass transfer, limiting attainable power and decreasing efficiency. The behavior of liquid water in GDLs is poorly understood, and the specific nature of mass transfer of multiphase flow in GDLs are not known. There is no clear direct correlation between easily measurable ex-situ GDL material properties and mass transfer characteristics. This thesis addresses this knowledge gap through a combination of test procedure development, experimentation and numerical pore scale modeling. Experimental techniques have been developed to measure permeability and capillary properties of water and air in the GDL matrix. Pore network modeling is used to estimate transport properties as a function of GDL water saturation since these are extremely difficult to determine experimentally. A method and apparatus for measuring the relationship between air-water capillary pressure and water saturation in PEMFC gas diffusion layers is described. The developed procedure of Gas Controlled Porosimetry is more effective for understanding the behaviour of water in GDL material then traditional methods such as the method of standard porosimetry and mercury intrusion porosimetry. Capillary pressure data for water injection and withdrawal from typical GDL materials are obtained, which demonstrated permanent hysteresis between water intrusion and water withdrawal. Capillary pressure, defined as the difference between the water and gas pressures at equilibrium, is positive during water injection and negative during water withdrawal. The results contribute to the understanding of liquid water behavior in GDL materials which is necessary for the development of effective PEMFC water management strategies and the design of future GDL materials. The absolute gas permeability of GDL materials was measured. Measurements were made in three perpendicular directions to investigate anisotropic properties of various materials. Most materials were found to be significantly anisotropic, with higher in-plane permeability than through-plane permeability. In-plane permeability was also measured as the GDL was compressed to different thicknesses. Typically, compression of a sample to half its initial thickness resulted in a decrease in permeability by an order of magnitude. The relationship between measured permeability and compressed porosity was compared to various models available in the literature, one of which allows the estimation of anisotropic tortuosity. The results of this work will be useful for 3D modeling studies where knowledge of permeability and effective diffusivity tensors is required. A pore network model of mass transport in GDL materials is developed and validated. The model idealizes the GDL as a regular cubic network of pore bodies and pore throats following respective size distributions of the pores. With the use of experimental data obtained the geometric parameters of the pore network model were calibrated with respect to porosimetry and gas permeability measurements for two common GDL materials. The model was subsequently used to compute the pore-scale distribution of water and gas under drainage conditions using an invasion percolation algorithm. From this information, transport properties of GDLs that are very difficult to measure were estimated, including the relative permeability of water and gas, and the effective gas diffusivity as functions of water saturation. Comparison of the model predictions with those obtained from constitutive relationships commonly used in current PEMFC models indicates that the latter may significantly overestimate the gas phase transport properties. The pore network model was also used to calculate the limiting current in a PEMFC under operating conditions for which transport through the GDL dominates mass transfer resistance. The results suggest that a dry GDL does not limit the performance of a PEMFC, but water flooding becomes a significant source of concentration polarization as the GDL becomes increasingly saturated with water. This work has significantly contributed to the understanding of mass transfer in gas diffusion layers in PEMFC through experimental investigation and pore scale modeling.

Proton Exchange Membrane Fuel Cells

Proton Exchange Membrane Fuel Cells PDF Author: David P. Wilkinson
Publisher: CRC Press
ISBN: 1439806667
Category : Science
Languages : en
Pages : 462

Get Book Here

Book Description
A Detailed, Up-to-Date Treatment of Key Developments in PEMFC MaterialsThe potential to revolutionize the way we power our worldBecause of its lower temperature and special polymer electrolyte membrane, the proton exchange membrane fuel cell (PEMFC) is well-suited for transportation, portable, and micro fuel cell applications. But the performance o

PEM Fuel Cells

PEM Fuel Cells PDF Author: Yun Wang
Publisher: Momentum Press
ISBN: 1606502476
Category : Technology & Engineering
Languages : en
Pages : 450

Get Book Here

Book Description
Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation—passenger cars, utility vehicles, and buses—and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: • An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; • Reviews of basic principles pertaining to PEM fuel cells, including thermodynamics, electrochemical reaction kinetics, flow, heat and mass transfer; and • Descriptions and discussions of water transport and management within a PEM fuel cell, including vapor- and liquid-phase water removal from the electrodes, the effects of two-phase flow, and solid water or ice dynamics and removal, particularly the specialized case of starting a PEM fuel cell at sub-freezing temperatures (cold start) and the various processes related to ice formation.

Gas Diffusion Layer Characterization and Microstructural Modeling in Polymer Electrolyte Fuel Cells

Gas Diffusion Layer Characterization and Microstructural Modeling in Polymer Electrolyte Fuel Cells PDF Author: Zahra Tayarani Yoosefabadi
Publisher:
ISBN:
Category :
Languages : en
Pages : 179

Get Book Here

Book Description
Polymer electrolyte fuel cells (PEFCs), as promising clean energy power sources, are potential substitutes not only for stationary power generation but also for mobile applications specifically in transportation due to their high power density and performance as well as lack of pollutants. PEFC vehicles are at the dawn of commercialization, but still, cost, performance, and durability of current PEFCs need to be further improved to facilitate vast market integration especially under high current density conditions. Pursuant to this goal, comprehensive multidisciplinary understanding of multiphase transport of mass, heat, and electricity in the PEFC constituents including the gas diffusion layer (GDL), as the centerpiece of this thesis, will help to make progress towards material optimization and subsequently fuel cell performance improvements. The GDL transport capability is determined by its effective transport properties which are strongly dependent on its morphological, microstructural, and physical characteristics. Therefore, accurate knowledge regarding the correlation between the GDL microstructure and its transport properties is essential for improving the performance and durability of PEFCs as well as for material optimization, fuel cell design, and prototyping in the area of fuel cell development and manufacturing. In this context, this thesis aims to develop a fast and cost-effective design tool for GDL microstructural modeling and transport properties simulation. Given the limitations of experimental, analytical, and tomographic techniques, stochastic microstructural model development to retrieve the heterogeneous GDL microstructure is a more reliable and flexible tool for GDL material design and prototyping assignments to reduce cost and time of the design cycle. Inspired by the randomness of the GDL porous media structure and its fabrication process, the GDL microstructure is virtually reconstructed as a collection of stochastic processes to provide a robust representation of the structure. The technique of stochastic microstructural reconstruction relies on statistical correlation functions which describe the probabilities of the porous media constituents' distribution and aim to encompass all the details of the porous media. The obtained 3D digitized realizations of the stochastic model are then used as a domain for numerical computation of transport properties. In this thesis, a unique stochastic GDL microstructural modeling framework inspired by manufacturing information and characterization data is developed in which all GDL substrate and MPL components are resolved, and thoroughly validated with literature and measured data for a variety of MPL-coated GDLs. The effects of PTFE loading and liquid water saturation on the GDL substrate anisotropic transport properties for both gas and liquid phases are found to be highly coupled and are therefore simulated and analyzed jointly. Furthermore, a parametric study is conducted to investigate the effect of MPL pore morphology composition on the MPL and MPL-coated GDL transport properties. The validated stochastic design tool can be used as a fast and accurate framework for reconstructing GDL porous materials and understanding the correlation between the GDL morphology and transport properties. This paves the way for development of improved GDL materials with desired transport properties in modern PEFCs.

Principles of Fuel Cells

Principles of Fuel Cells PDF Author: Xianguo Li
Publisher: CRC Press
ISBN: 113520179X
Category : Science
Languages : en
Pages : 465

Get Book Here

Book Description
The book is engineering oriented and covers a large variety of topics ranging from fundamental principles to performance evaluation and applications. It is written systematically and completely on the subject with a summary of state-of-the-art fuel cell technology, filling the need for a timely resource. This is a unique book serving academic researchers, engineers, as well as people working in the fuel cell industry. It is also of substantial interest to students, engineers, and scientists in mechanical engineering, chemistry and chemical engineering, electrochemistry, materials science and engineering, power generation and propulsion systems, and automobile engineering.

Investigation of Surface Properties and Heterogeneity in Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells

Investigation of Surface Properties and Heterogeneity in Gas Diffusion Layers for Polymer Electrolyte Membrane Fuel Cells PDF Author: J. Zachary Fishman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Proton Exchange Membrane Fuel Cells

Proton Exchange Membrane Fuel Cells PDF Author: Alhussein Albarbar
Publisher: Springer
ISBN: 3319707272
Category : Technology & Engineering
Languages : en
Pages : 172

Get Book Here

Book Description
This book examines the characteristics of Proton Exchange Membrane (PEM) Fuel Cells with a focus on deriving realistic finite element models. The book also explains in detail how to set up measuring systems, data analysis, and PEM Fuel Cells’ static and dynamic characteristics. Covered in detail are design and operation principles such as polarization phenomenon, thermodynamic analysis, and overall voltage; failure modes and mechanisms such as permanent faults, membrane degradation, and water management; and modelling and numerical simulation including semi-empirical, one-dimensional, two-dimensional, and three-dimensional models. It is appropriate for graduate students, researchers, and engineers who work with the design and reliability of hydrogen fuel cells, in particular proton exchange membrane fuel cells.

Transport interactions between gas and water in thin hydrophobic porous layers

Transport interactions between gas and water in thin hydrophobic porous layers PDF Author: Stefan Dwenger
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832541977
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
In the last decades it has become clear that the transport of gas and water inside the mixed-wettable gas diffusion medium (GDL) plays a significant role for the improved understanding and optimization of the polymer electrolyte membrane fuel cells (PEMFC). In the present thesis the influence of liquid water and gas on the transport properties of gas diffusion media of polymer electrolyte membrane fuel cells (PEMFC) is examined numerically and experimentally. The different arising transport mechanisms and their influence as well as their representation in theoretical models (especially REV-based Darcy models) are presented. Moreover, an approach for modelling and simulation of the water distribution inside mixed-wettable porous media, especially gas diffusion layers, is discussed. To this end, a thermodynamical-based approach is chosen - the interactions between gaseous, liquid, and solid (carbon and PTFE) phases are treated with the help of a stationary scheme based on the interfacial energies which have to be minimized. For the optimization task itself the (parallel) simulated annealing approach is chosen and discussed. In addition algorithms for the generation and discretization of the virtual porous structures are described. Based on the results the modelling of constitutive relationships and transport parameters depending on water and PTFE content is performed. Besides that experiments for the measurement of those relationships are developed. A special focus is on the precise compression of the GDL sample and the influence on capillary pressure-saturation relationship, relative permeabilities, and effective diffusivities. Different apparatus for in- and through-plane measurements are developed. At the end the derived transport parameters and relationships are applied to a REV-based Darcy model which is compared with an integral experiment. The experimental setup is motivated by the counter-current flow regime of liquid water and gas at the cathode side of the PEMFC. It has been demonstrated that Darcy-flow based models for porous media are also applicable to thin technical porous layers.

Transport Properties of the Gas Diffusion Layer of PEM Fuel Cells

Transport Properties of the Gas Diffusion Layer of PEM Fuel Cells PDF Author: Nada Zamel
Publisher:
ISBN:
Category :
Languages : en
Pages : 144

Get Book Here

Book Description
Non-woven carbon paper is a porous material composed of carbon composite and is the preferred material for use as the gas diffusion layer (GDL) of polymer electrolyte membrane (PEM) fuel cells. This material is both chemically and mechanically stable and provides a free path for diffusion of reactants and removal of products and is electrically conductive for transport of electrons. The transport of species in the GDL has a direct effect on the overall reaction rate in the catalyst layer. Numerical simulation of these transport phenomena is dependent on the transport properties associated with each phenomenon. Most of the available correlations in literature for these properties have been formulated for spherical shell porous media, sand and rock, which are not representative of the structure of the GDL. Hence, the objective of this research work is to investigate the transport properties (diffusion coefficient, thermal conductivity, electrical conductivity, intrinsic and relative permeability and the capillary pressure) of the GDL using experimental and numerical techniques.

Polymer Electrolyte Fuel Cells 11

Polymer Electrolyte Fuel Cells 11 PDF Author: H. A. Gasteiger
Publisher: The Electrochemical Society
ISBN: 1607682540
Category : Fuel cells
Languages : en
Pages : 2388

Get Book Here

Book Description