Author: P. Lochak
Publisher: Springer Science & Business Media
ISBN: 1461210445
Category : Mathematics
Languages : en
Pages : 360
Book Description
In the past several decades many significant results in averaging for systems of ODE's have been obtained. These results have not attracted a tention in proportion to their importance, partly because they have been overshadowed by KAM theory, and partly because they remain widely scattered - and often untranslated - throughout the Russian literature. The present book seeks to remedy that situation by providing a summary, including proofs, of averaging and related techniques for single and multiphase systems of ODE's. The first part of the book surveys most of what is known in the general case and examines the role of ergodicity in averaging. Stronger stability results are then obtained for the special case of Hamiltonian systems, and the relation of these results to KAM Theory is discussed. Finally, in view of their close relation to averaging methods, both classical and quantum adiabatic theorems are considered at some length. With the inclusion of nine concise appendices, the book is very nearly self-contained, and should serve the needs of both physicists desiring an accessible summary of known results, and of mathematicians seeing an introduction to current areas of research in averaging.
Multiphase Averaging for Classical Systems
Author: P. Lochak
Publisher: Springer Science & Business Media
ISBN: 1461210445
Category : Mathematics
Languages : en
Pages : 360
Book Description
In the past several decades many significant results in averaging for systems of ODE's have been obtained. These results have not attracted a tention in proportion to their importance, partly because they have been overshadowed by KAM theory, and partly because they remain widely scattered - and often untranslated - throughout the Russian literature. The present book seeks to remedy that situation by providing a summary, including proofs, of averaging and related techniques for single and multiphase systems of ODE's. The first part of the book surveys most of what is known in the general case and examines the role of ergodicity in averaging. Stronger stability results are then obtained for the special case of Hamiltonian systems, and the relation of these results to KAM Theory is discussed. Finally, in view of their close relation to averaging methods, both classical and quantum adiabatic theorems are considered at some length. With the inclusion of nine concise appendices, the book is very nearly self-contained, and should serve the needs of both physicists desiring an accessible summary of known results, and of mathematicians seeing an introduction to current areas of research in averaging.
Publisher: Springer Science & Business Media
ISBN: 1461210445
Category : Mathematics
Languages : en
Pages : 360
Book Description
In the past several decades many significant results in averaging for systems of ODE's have been obtained. These results have not attracted a tention in proportion to their importance, partly because they have been overshadowed by KAM theory, and partly because they remain widely scattered - and often untranslated - throughout the Russian literature. The present book seeks to remedy that situation by providing a summary, including proofs, of averaging and related techniques for single and multiphase systems of ODE's. The first part of the book surveys most of what is known in the general case and examines the role of ergodicity in averaging. Stronger stability results are then obtained for the special case of Hamiltonian systems, and the relation of these results to KAM Theory is discussed. Finally, in view of their close relation to averaging methods, both classical and quantum adiabatic theorems are considered at some length. With the inclusion of nine concise appendices, the book is very nearly self-contained, and should serve the needs of both physicists desiring an accessible summary of known results, and of mathematicians seeing an introduction to current areas of research in averaging.
Hamiltonian Dynamical Systems
Author: H.S. Dumas
Publisher: Springer Science & Business Media
ISBN: 1461384486
Category : Mathematics
Languages : en
Pages : 392
Book Description
From its origins nearly two centuries ago, Hamiltonian dynamics has grown to embrace the physics of nearly all systems that evolve without dissipation, as well as a number of branches of mathematics, some of which were literally created along the way. This volume contains the proceedings of the International Conference on Hamiltonian Dynamical Systems; its contents reflect the wide scope and increasing influence of Hamiltonian methods, with contributions from a whole spectrum of researchers in mathematics and physics from more than half a dozen countries, as well as several researchers in the history of science. With the inclusion of several historical articles, this volume is not only a slice of state-of-the-art methodology in Hamiltonian dynamics, but also a slice of the bigger picture in which that methodology is imbedded.
Publisher: Springer Science & Business Media
ISBN: 1461384486
Category : Mathematics
Languages : en
Pages : 392
Book Description
From its origins nearly two centuries ago, Hamiltonian dynamics has grown to embrace the physics of nearly all systems that evolve without dissipation, as well as a number of branches of mathematics, some of which were literally created along the way. This volume contains the proceedings of the International Conference on Hamiltonian Dynamical Systems; its contents reflect the wide scope and increasing influence of Hamiltonian methods, with contributions from a whole spectrum of researchers in mathematics and physics from more than half a dozen countries, as well as several researchers in the history of science. With the inclusion of several historical articles, this volume is not only a slice of state-of-the-art methodology in Hamiltonian dynamics, but also a slice of the bigger picture in which that methodology is imbedded.
Hamiltonian Systems with Three or More Degrees of Freedom
Author: Carles Simó
Publisher: Springer Science & Business Media
ISBN: 940114673X
Category : Mathematics
Languages : en
Pages : 681
Book Description
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.
Publisher: Springer Science & Business Media
ISBN: 940114673X
Category : Mathematics
Languages : en
Pages : 681
Book Description
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.
Mathematical Results in Quantum Mechanics
Author: Jaroslav Dittrich
Publisher: Birkhäuser
ISBN: 3034887450
Category : Science
Languages : en
Pages : 387
Book Description
This book constitutes the proceedings of the QMath 7 Conference on Mathematical Results in Quantum Mechanics held in Prague, Czech Republic in June, 1998. The volume addresses mathematicians and physicists interested in contemporary quantum physics and associated mathematical questions, presenting new results on Schrödinger and Pauli operators with regular, fractal or random potentials, scattering theory, adiabatic analysis, and interesting new physical systems such as photonic crystals, quantum dots and wires.
Publisher: Birkhäuser
ISBN: 3034887450
Category : Science
Languages : en
Pages : 387
Book Description
This book constitutes the proceedings of the QMath 7 Conference on Mathematical Results in Quantum Mechanics held in Prague, Czech Republic in June, 1998. The volume addresses mathematicians and physicists interested in contemporary quantum physics and associated mathematical questions, presenting new results on Schrödinger and Pauli operators with regular, fractal or random potentials, scattering theory, adiabatic analysis, and interesting new physical systems such as photonic crystals, quantum dots and wires.
Modern Methods of Analytical Mechanics and their Applications
Author: Valentin V. Rumyantsev
Publisher: Springer
ISBN: 3709125200
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
The volume aims at giving a comprehensive and up-to-date view of modern methods of analytical mechanics (general equations, invariant objects, stability and bifurcations) and their applications (rigid body dynamics, celestial mechanics, multibody systems etc.). The course is at an advanced level. It is designed for postgraduate students, research engineers and academics that are familiar with basic concepts of analytical dynamics and stability theory. Although the course deals with mechanical problems, most of the concepts and methods involved are equally applicated to general dynamical systems.
Publisher: Springer
ISBN: 3709125200
Category : Technology & Engineering
Languages : en
Pages : 349
Book Description
The volume aims at giving a comprehensive and up-to-date view of modern methods of analytical mechanics (general equations, invariant objects, stability and bifurcations) and their applications (rigid body dynamics, celestial mechanics, multibody systems etc.). The course is at an advanced level. It is designed for postgraduate students, research engineers and academics that are familiar with basic concepts of analytical dynamics and stability theory. Although the course deals with mechanical problems, most of the concepts and methods involved are equally applicated to general dynamical systems.
New Directions in Mathematical Fluid Mechanics
Author: Andrei V. Fursikov
Publisher: Springer Science & Business Media
ISBN: 3034601522
Category : Science
Languages : en
Pages : 435
Book Description
On November 3, 2005, Alexander Vasil’evich Kazhikhov left this world, untimely and unexpectedly. He was one of the most in?uential mathematicians in the mechanics of ?uids, and will be remembered for his outstanding results that had, and still have, a c- siderablysigni?cantin?uenceinthe?eld.Amonghis manyachievements,werecall that he was the founder of the modern mathematical theory of the Navier-Stokes equations describing one- and two-dimensional motions of a viscous, compressible and heat-conducting gas. A brief account of Professor Kazhikhov’s contributions to science is provided in the following article “Scienti?c portrait of Alexander Vasil’evich Kazhikhov”. This volume is meant to be an expression of high regard to his memory, from most of his friends and his colleagues. In particular, it collects a selection of papers that represent the latest progress in a number of new important directions of Mathematical Physics, mainly of Mathematical Fluid Mechanics. These papers are written by world renowned specialists. Most of them were friends, students or colleagues of Professor Kazhikhov, who either worked with him directly, or met him many times in o?cial scienti?c meetings, where they had the opportunity of discussing problems of common interest.
Publisher: Springer Science & Business Media
ISBN: 3034601522
Category : Science
Languages : en
Pages : 435
Book Description
On November 3, 2005, Alexander Vasil’evich Kazhikhov left this world, untimely and unexpectedly. He was one of the most in?uential mathematicians in the mechanics of ?uids, and will be remembered for his outstanding results that had, and still have, a c- siderablysigni?cantin?uenceinthe?eld.Amonghis manyachievements,werecall that he was the founder of the modern mathematical theory of the Navier-Stokes equations describing one- and two-dimensional motions of a viscous, compressible and heat-conducting gas. A brief account of Professor Kazhikhov’s contributions to science is provided in the following article “Scienti?c portrait of Alexander Vasil’evich Kazhikhov”. This volume is meant to be an expression of high regard to his memory, from most of his friends and his colleagues. In particular, it collects a selection of papers that represent the latest progress in a number of new important directions of Mathematical Physics, mainly of Mathematical Fluid Mechanics. These papers are written by world renowned specialists. Most of them were friends, students or colleagues of Professor Kazhikhov, who either worked with him directly, or met him many times in o?cial scienti?c meetings, where they had the opportunity of discussing problems of common interest.
Variational Methods for Structural Optimization
Author: Andrej Cherkaev
Publisher: Springer Science & Business Media
ISBN: 1461211883
Category : Science
Languages : en
Pages : 561
Book Description
This book bridges a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in sufficiently simple form as to make them available for practical use.
Publisher: Springer Science & Business Media
ISBN: 1461211883
Category : Science
Languages : en
Pages : 561
Book Description
This book bridges a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in sufficiently simple form as to make them available for practical use.
The N-Vortex Problem
Author: Paul K. Newton
Publisher: Springer Science & Business Media
ISBN: 146849290X
Category : Mathematics
Languages : en
Pages : 430
Book Description
This text is an introduction to current research on the N- vortex problem of fluid mechanics. It describes the Hamiltonian aspects of vortex dynamics as an entry point into the rather large literature on the topic, with exercises at the end of each chapter.
Publisher: Springer Science & Business Media
ISBN: 146849290X
Category : Mathematics
Languages : en
Pages : 430
Book Description
This text is an introduction to current research on the N- vortex problem of fluid mechanics. It describes the Hamiltonian aspects of vortex dynamics as an entry point into the rather large literature on the topic, with exercises at the end of each chapter.
Direct Methods in the Calculus of Variations
Author: Bernard Dacorogna
Publisher: Springer Science & Business Media
ISBN: 0387552499
Category : Mathematics
Languages : en
Pages : 616
Book Description
This book is developed for the study of vectorial problems in the calculus of variations. The subject is a very active one and almost half of the book consists of new material. This is a new edition of the earlier book published in 1989 and it is suitable for graduate students. The book has been updated with some new material and examples added. Applications are included.
Publisher: Springer Science & Business Media
ISBN: 0387552499
Category : Mathematics
Languages : en
Pages : 616
Book Description
This book is developed for the study of vectorial problems in the calculus of variations. The subject is a very active one and almost half of the book consists of new material. This is a new edition of the earlier book published in 1989 and it is suitable for graduate students. The book has been updated with some new material and examples added. Applications are included.
Chaos, Fractals, and Noise
Author: Andrzej Lasota
Publisher: Springer Science & Business Media
ISBN: 146124286X
Category : Mathematics
Languages : en
Pages : 481
Book Description
The first edition of this book was originally published in 1985 under the ti tle "Probabilistic Properties of Deterministic Systems. " In the intervening years, interest in so-called "chaotic" systems has continued unabated but with a more thoughtful and sober eye toward applications, as befits a ma turing field. This interest in the serious usage of the concepts and techniques of nonlinear dynamics by applied scientists has probably been spurred more by the availability of inexpensive computers than by any other factor. Thus, computer experiments have been prominent, suggesting the wealth of phe nomena that may be resident in nonlinear systems. In particular, they allow one to observe the interdependence between the deterministic and probabilistic properties of these systems such as the existence of invariant measures and densities, statistical stability and periodicity, the influence of stochastic perturbations, the formation of attractors, and many others. The aim of the book, and especially of this second edition, is to present recent theoretical methods which allow one to study these effects. We have taken the opportunity in this second edition to not only correct the errors of the first edition, but also to add substantially new material in five sections and a new chapter.
Publisher: Springer Science & Business Media
ISBN: 146124286X
Category : Mathematics
Languages : en
Pages : 481
Book Description
The first edition of this book was originally published in 1985 under the ti tle "Probabilistic Properties of Deterministic Systems. " In the intervening years, interest in so-called "chaotic" systems has continued unabated but with a more thoughtful and sober eye toward applications, as befits a ma turing field. This interest in the serious usage of the concepts and techniques of nonlinear dynamics by applied scientists has probably been spurred more by the availability of inexpensive computers than by any other factor. Thus, computer experiments have been prominent, suggesting the wealth of phe nomena that may be resident in nonlinear systems. In particular, they allow one to observe the interdependence between the deterministic and probabilistic properties of these systems such as the existence of invariant measures and densities, statistical stability and periodicity, the influence of stochastic perturbations, the formation of attractors, and many others. The aim of the book, and especially of this second edition, is to present recent theoretical methods which allow one to study these effects. We have taken the opportunity in this second edition to not only correct the errors of the first edition, but also to add substantially new material in five sections and a new chapter.